g എന്നതിനായി സോൾവ് ചെയ്യുക
g=-2
g = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=-2 ab=3\left(-16\right)=-48
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 3g^{2}+ag+bg-16 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-48 2,-24 3,-16 4,-12 6,-8
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -48 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-8 b=6
സൊല്യൂഷൻ എന്നത് -2 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(3g^{2}-8g\right)+\left(6g-16\right)
3g^{2}-2g-16 എന്നത് \left(3g^{2}-8g\right)+\left(6g-16\right) എന്നായി തിരുത്തിയെഴുതുക.
g\left(3g-8\right)+2\left(3g-8\right)
ആദ്യ ഗ്രൂപ്പിലെ g എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3g-8\right)\left(g+2\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3g-8 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
g=\frac{8}{3} g=-2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 3g-8=0, g+2=0 എന്നിവ സോൾവ് ചെയ്യുക.
3g^{2}-2g-16=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
g=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-16\right)}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -2 എന്നതും c എന്നതിനായി -16 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
g=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-16\right)}}{2\times 3}
-2 സ്ക്വയർ ചെയ്യുക.
g=\frac{-\left(-2\right)±\sqrt{4-12\left(-16\right)}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
g=\frac{-\left(-2\right)±\sqrt{4+192}}{2\times 3}
-12, -16 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
g=\frac{-\left(-2\right)±\sqrt{196}}{2\times 3}
4, 192 എന്നതിൽ ചേർക്കുക.
g=\frac{-\left(-2\right)±14}{2\times 3}
196 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
g=\frac{2±14}{2\times 3}
-2 എന്നതിന്റെ വിപരീതം 2 ആണ്.
g=\frac{2±14}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
g=\frac{16}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, g=\frac{2±14}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 2, 14 എന്നതിൽ ചേർക്കുക.
g=\frac{8}{3}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{16}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
g=-\frac{12}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, g=\frac{2±14}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 2 എന്നതിൽ നിന്ന് 14 വ്യവകലനം ചെയ്യുക.
g=-2
6 കൊണ്ട് -12 എന്നതിനെ ഹരിക്കുക.
g=\frac{8}{3} g=-2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
3g^{2}-2g-16=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
3g^{2}-2g-16-\left(-16\right)=-\left(-16\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 16 ചേർക്കുക.
3g^{2}-2g=-\left(-16\right)
അതിൽ നിന്നുതന്നെ -16 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
3g^{2}-2g=16
0 എന്നതിൽ നിന്ന് -16 വ്യവകലനം ചെയ്യുക.
\frac{3g^{2}-2g}{3}=\frac{16}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
g^{2}-\frac{2}{3}g=\frac{16}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
g^{2}-\frac{2}{3}g+\left(-\frac{1}{3}\right)^{2}=\frac{16}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{2}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{1}{3} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
g^{2}-\frac{2}{3}g+\frac{1}{9}=\frac{16}{3}+\frac{1}{9}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{3} സ്ക്വയർ ചെയ്യുക.
g^{2}-\frac{2}{3}g+\frac{1}{9}=\frac{49}{9}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{16}{3} എന്നത് \frac{1}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(g-\frac{1}{3}\right)^{2}=\frac{49}{9}
g^{2}-\frac{2}{3}g+\frac{1}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(g-\frac{1}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
g-\frac{1}{3}=\frac{7}{3} g-\frac{1}{3}=-\frac{7}{3}
ലഘൂകരിക്കുക.
g=\frac{8}{3} g=-2
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{1}{3} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}