പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=20 ab=3\times 12=36
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 3d^{2}+ad+bd+12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,36 2,18 3,12 4,9 6,6
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 36 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=2 b=18
സൊല്യൂഷൻ എന്നത് 20 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(3d^{2}+2d\right)+\left(18d+12\right)
3d^{2}+20d+12 എന്നത് \left(3d^{2}+2d\right)+\left(18d+12\right) എന്നായി തിരുത്തിയെഴുതുക.
d\left(3d+2\right)+6\left(3d+2\right)
ആദ്യ ഗ്രൂപ്പിലെ d എന്നതും രണ്ടാമത്തേതിലെ 6 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3d+2\right)\left(d+6\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3d+2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
3d^{2}+20d+12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
d=\frac{-20±\sqrt{20^{2}-4\times 3\times 12}}{2\times 3}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
d=\frac{-20±\sqrt{400-4\times 3\times 12}}{2\times 3}
20 സ്ക്വയർ ചെയ്യുക.
d=\frac{-20±\sqrt{400-12\times 12}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
d=\frac{-20±\sqrt{400-144}}{2\times 3}
-12, 12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
d=\frac{-20±\sqrt{256}}{2\times 3}
400, -144 എന്നതിൽ ചേർക്കുക.
d=\frac{-20±16}{2\times 3}
256 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
d=\frac{-20±16}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
d=-\frac{4}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, d=\frac{-20±16}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -20, 16 എന്നതിൽ ചേർക്കുക.
d=-\frac{2}{3}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-4}{6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
d=-\frac{36}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, d=\frac{-20±16}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -20 എന്നതിൽ നിന്ന് 16 വ്യവകലനം ചെയ്യുക.
d=-6
6 കൊണ്ട് -36 എന്നതിനെ ഹരിക്കുക.
3d^{2}+20d+12=3\left(d-\left(-\frac{2}{3}\right)\right)\left(d-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -\frac{2}{3} എന്നതും, x_{2}-നായി -6 എന്നതും പകരം വയ്‌ക്കുക.
3d^{2}+20d+12=3\left(d+\frac{2}{3}\right)\left(d+6\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
3d^{2}+20d+12=3\times \frac{3d+2}{3}\left(d+6\right)
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{2}{3} എന്നത് d എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
3d^{2}+20d+12=\left(3d+2\right)\left(d+6\right)
3, 3 എന്നിവയിലെ 3 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.