x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=-\sqrt{2}i+4\approx 4-1.414213562i
x=4+\sqrt{2}i\approx 4+1.414213562i
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(x-4\right)^{2}=-\frac{6}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
\left(x-4\right)^{2}=-2
3 കൊണ്ട് -6 എന്നതിനെ ഹരിക്കുക.
x-4=\sqrt{2}i x-4=-\sqrt{2}i
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-4-\left(-4\right)=\sqrt{2}i-\left(-4\right) x-4-\left(-4\right)=-\sqrt{2}i-\left(-4\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 4 ചേർക്കുക.
x=\sqrt{2}i-\left(-4\right) x=-\sqrt{2}i-\left(-4\right)
അതിൽ നിന്നുതന്നെ -4 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x=4+\sqrt{2}i
i\sqrt{2} എന്നതിൽ നിന്ന് -4 വ്യവകലനം ചെയ്യുക.
x=-\sqrt{2}i+4
-i\sqrt{2} എന്നതിൽ നിന്ന് -4 വ്യവകലനം ചെയ്യുക.
x=4+\sqrt{2}i x=-\sqrt{2}i+4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}