പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x^{2}-9=4x
x^{2}-3 കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-9-4x=0
ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
3x^{2}-4x-9=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -4 എന്നതും c എന്നതിനായി -9 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-9\right)}}{2\times 3}
-4 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-9\right)}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-4\right)±\sqrt{16+108}}{2\times 3}
-12, -9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-4\right)±\sqrt{124}}{2\times 3}
16, 108 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-4\right)±2\sqrt{31}}{2\times 3}
124 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{4±2\sqrt{31}}{2\times 3}
-4 എന്നതിന്‍റെ വിപരീതം 4 ആണ്.
x=\frac{4±2\sqrt{31}}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2\sqrt{31}+4}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±2\sqrt{31}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4, 2\sqrt{31} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{31}+2}{3}
6 കൊണ്ട് 4+2\sqrt{31} എന്നതിനെ ഹരിക്കുക.
x=\frac{4-2\sqrt{31}}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{4±2\sqrt{31}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 4 എന്നതിൽ നിന്ന് 2\sqrt{31} വ്യവകലനം ചെയ്യുക.
x=\frac{2-\sqrt{31}}{3}
6 കൊണ്ട് 4-2\sqrt{31} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{31}+2}{3} x=\frac{2-\sqrt{31}}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x^{2}-9=4x
x^{2}-3 കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-9-4x=0
ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
3x^{2}-4x=9
9 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
\frac{3x^{2}-4x}{3}=\frac{9}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{4}{3}x=\frac{9}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{4}{3}x=3
3 കൊണ്ട് 9 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=3+\left(-\frac{2}{3}\right)^{2}
-\frac{2}{3} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{4}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{2}{3} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{4}{3}x+\frac{4}{9}=3+\frac{4}{9}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{2}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{31}{9}
3, \frac{4}{9} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{2}{3}\right)^{2}=\frac{31}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{31}{9}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{2}{3}=\frac{\sqrt{31}}{3} x-\frac{2}{3}=-\frac{\sqrt{31}}{3}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{31}+2}{3} x=\frac{2-\sqrt{31}}{3}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{2}{3} ചേർക്കുക.