പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x^{2}-6=x^{2}-x-6
x-3 കൊണ്ട് x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-6-x^{2}=-x-6
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
2x^{2}-6=-x-6
2x^{2} നേടാൻ 3x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-6+x=-6
x ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}-6+x+6=0
6 ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}+x=0
0 ലഭ്യമാക്കാൻ -6, 6 എന്നിവ ചേർക്കുക.
x\left(2x+1\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=-\frac{1}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 2x+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
3x^{2}-6=x^{2}-x-6
x-3 കൊണ്ട് x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-6-x^{2}=-x-6
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
2x^{2}-6=-x-6
2x^{2} നേടാൻ 3x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-6+x=-6
x ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}-6+x+6=0
6 ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}+x=0
0 ലഭ്യമാക്കാൻ -6, 6 എന്നിവ ചേർക്കുക.
x=\frac{-1±\sqrt{1^{2}}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി 1 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-1±1}{2\times 2}
1^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-1±1}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-1±1}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1, 1 എന്നതിൽ ചേർക്കുക.
x=0
4 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{2}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-1±1}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1 എന്നതിൽ നിന്ന് 1 വ്യവകലനം ചെയ്യുക.
x=-\frac{1}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-2}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=0 x=-\frac{1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x^{2}-6=x^{2}-x-6
x-3 കൊണ്ട് x+2 ഗുണിക്കാനും സമാന പദങ്ങൾ സംയോജിപ്പിക്കാനും ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
3x^{2}-6-x^{2}=-x-6
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
2x^{2}-6=-x-6
2x^{2} നേടാൻ 3x^{2}, -x^{2} എന്നിവ യോജിപ്പിക്കുക.
2x^{2}-6+x=-6
x ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}+x=-6+6
6 ഇരു വശങ്ങളിലും ചേർക്കുക.
2x^{2}+x=0
0 ലഭ്യമാക്കാൻ -6, 6 എന്നിവ ചേർക്കുക.
\frac{2x^{2}+x}{2}=\frac{0}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{1}{2}x=\frac{0}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{1}{2}x=0
2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
\frac{1}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{1}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{1}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{1}{4} സ്ക്വയർ ചെയ്യുക.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
ലഘൂകരിക്കുക.
x=0 x=-\frac{1}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{4} കുറയ്ക്കുക.