x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{\sqrt{703} + 25}{3} \approx 17.171382389
x=\frac{25-\sqrt{703}}{3}\approx -0.504715722
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
3x^{2}-50x-26=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 3\left(-26\right)}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -50 എന്നതും c എന്നതിനായി -26 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 3\left(-26\right)}}{2\times 3}
-50 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-50\right)±\sqrt{2500-12\left(-26\right)}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-50\right)±\sqrt{2500+312}}{2\times 3}
-12, -26 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-50\right)±\sqrt{2812}}{2\times 3}
2500, 312 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-50\right)±2\sqrt{703}}{2\times 3}
2812 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{50±2\sqrt{703}}{2\times 3}
-50 എന്നതിന്റെ വിപരീതം 50 ആണ്.
x=\frac{50±2\sqrt{703}}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2\sqrt{703}+50}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{50±2\sqrt{703}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 50, 2\sqrt{703} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{703}+25}{3}
6 കൊണ്ട് 50+2\sqrt{703} എന്നതിനെ ഹരിക്കുക.
x=\frac{50-2\sqrt{703}}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{50±2\sqrt{703}}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 50 എന്നതിൽ നിന്ന് 2\sqrt{703} വ്യവകലനം ചെയ്യുക.
x=\frac{25-\sqrt{703}}{3}
6 കൊണ്ട് 50-2\sqrt{703} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{703}+25}{3} x=\frac{25-\sqrt{703}}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
3x^{2}-50x-26=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
3x^{2}-50x-26-\left(-26\right)=-\left(-26\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 26 ചേർക്കുക.
3x^{2}-50x=-\left(-26\right)
അതിൽ നിന്നുതന്നെ -26 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
3x^{2}-50x=26
0 എന്നതിൽ നിന്ന് -26 വ്യവകലനം ചെയ്യുക.
\frac{3x^{2}-50x}{3}=\frac{26}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{50}{3}x=\frac{26}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{50}{3}x+\left(-\frac{25}{3}\right)^{2}=\frac{26}{3}+\left(-\frac{25}{3}\right)^{2}
-\frac{25}{3} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{50}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{25}{3} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{50}{3}x+\frac{625}{9}=\frac{26}{3}+\frac{625}{9}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{25}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{50}{3}x+\frac{625}{9}=\frac{703}{9}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{26}{3} എന്നത് \frac{625}{9} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{25}{3}\right)^{2}=\frac{703}{9}
x^{2}-\frac{50}{3}x+\frac{625}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{25}{3}\right)^{2}}=\sqrt{\frac{703}{9}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{25}{3}=\frac{\sqrt{703}}{3} x-\frac{25}{3}=-\frac{\sqrt{703}}{3}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{703}+25}{3} x=\frac{25-\sqrt{703}}{3}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{25}{3} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}