പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x^{2}+72-33x=0
ഇരുവശങ്ങളിൽ നിന്നും 33x കുറയ്ക്കുക.
x^{2}+24-11x=0
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}-11x+24=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=-11 ab=1\times 24=24
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx+24 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-24 -2,-12 -3,-8 -4,-6
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 24 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-8 b=-3
സൊല്യൂഷൻ എന്നത് -11 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-8x\right)+\left(-3x+24\right)
x^{2}-11x+24 എന്നത് \left(x^{2}-8x\right)+\left(-3x+24\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-8\right)-3\left(x-8\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ -3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-8\right)\left(x-3\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-8 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=8 x=3
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-8=0, x-3=0 എന്നിവ സോൾവ് ചെയ്യുക.
3x^{2}+72-33x=0
ഇരുവശങ്ങളിൽ നിന്നും 33x കുറയ്ക്കുക.
3x^{2}-33x+72=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 3\times 72}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി -33 എന്നതും c എന്നതിനായി 72 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 3\times 72}}{2\times 3}
-33 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-33\right)±\sqrt{1089-12\times 72}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-33\right)±\sqrt{1089-864}}{2\times 3}
-12, 72 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-33\right)±\sqrt{225}}{2\times 3}
1089, -864 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-33\right)±15}{2\times 3}
225 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{33±15}{2\times 3}
-33 എന്നതിന്‍റെ വിപരീതം 33 ആണ്.
x=\frac{33±15}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{48}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{33±15}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 33, 15 എന്നതിൽ ചേർക്കുക.
x=8
6 കൊണ്ട് 48 എന്നതിനെ ഹരിക്കുക.
x=\frac{18}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{33±15}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 33 എന്നതിൽ നിന്ന് 15 വ്യവകലനം ചെയ്യുക.
x=3
6 കൊണ്ട് 18 എന്നതിനെ ഹരിക്കുക.
x=8 x=3
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x^{2}+72-33x=0
ഇരുവശങ്ങളിൽ നിന്നും 33x കുറയ്ക്കുക.
3x^{2}-33x=-72
ഇരുവശങ്ങളിൽ നിന്നും 72 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്‍റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
\frac{3x^{2}-33x}{3}=-\frac{72}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{33}{3}\right)x=-\frac{72}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-11x=-\frac{72}{3}
3 കൊണ്ട് -33 എന്നതിനെ ഹരിക്കുക.
x^{2}-11x=-24
3 കൊണ്ട് -72 എന്നതിനെ ഹരിക്കുക.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-24+\left(-\frac{11}{2}\right)^{2}
-\frac{11}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -11-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{11}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-11x+\frac{121}{4}=-24+\frac{121}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{11}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-11x+\frac{121}{4}=\frac{25}{4}
-24, \frac{121}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{11}{2}\right)^{2}=\frac{25}{4}
x^{2}-11x+\frac{121}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{11}{2}=\frac{5}{2} x-\frac{11}{2}=-\frac{5}{2}
ലഘൂകരിക്കുക.
x=8 x=3
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{11}{2} ചേർക്കുക.