പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

3x^{2}+2x+15=9
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
3x^{2}+2x+15-9=9-9
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക.
3x^{2}+2x+15-9=0
അതിൽ നിന്നുതന്നെ 9 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
3x^{2}+2x+6=0
15 എന്നതിൽ നിന്ന് 9 വ്യവകലനം ചെയ്യുക.
x=\frac{-2±\sqrt{2^{2}-4\times 3\times 6}}{2\times 3}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 3 എന്നതും b എന്നതിനായി 2 എന്നതും c എന്നതിനായി 6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-2±\sqrt{4-4\times 3\times 6}}{2\times 3}
2 സ്ക്വയർ ചെയ്യുക.
x=\frac{-2±\sqrt{4-12\times 6}}{2\times 3}
-4, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{4-72}}{2\times 3}
-12, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2±\sqrt{-68}}{2\times 3}
4, -72 എന്നതിൽ ചേർക്കുക.
x=\frac{-2±2\sqrt{17}i}{2\times 3}
-68 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-2±2\sqrt{17}i}{6}
2, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-2+2\sqrt{17}i}{6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±2\sqrt{17}i}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2, 2i\sqrt{17} എന്നതിൽ ചേർക്കുക.
x=\frac{-1+\sqrt{17}i}{3}
6 കൊണ്ട് -2+2i\sqrt{17} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{17}i-2}{6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-2±2\sqrt{17}i}{6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -2 എന്നതിൽ നിന്ന് 2i\sqrt{17} വ്യവകലനം ചെയ്യുക.
x=\frac{-\sqrt{17}i-1}{3}
6 കൊണ്ട് -2-2i\sqrt{17} എന്നതിനെ ഹരിക്കുക.
x=\frac{-1+\sqrt{17}i}{3} x=\frac{-\sqrt{17}i-1}{3}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
3x^{2}+2x+15=9
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
3x^{2}+2x+15-15=9-15
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 15 കുറയ്ക്കുക.
3x^{2}+2x=9-15
അതിൽ നിന്നുതന്നെ 15 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
3x^{2}+2x=-6
9 എന്നതിൽ നിന്ന് 15 വ്യവകലനം ചെയ്യുക.
\frac{3x^{2}+2x}{3}=-\frac{6}{3}
ഇരുവശങ്ങളെയും 3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{2}{3}x=-\frac{6}{3}
3 കൊണ്ട് ഹരിക്കുന്നത്, 3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{2}{3}x=-2
3 കൊണ്ട് -6 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-2+\left(\frac{1}{3}\right)^{2}
\frac{1}{3} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{2}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{1}{3} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-2+\frac{1}{9}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{1}{3} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{17}{9}
-2, \frac{1}{9} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{1}{3}\right)^{2}=-\frac{17}{9}
x^{2}+\frac{2}{3}x+\frac{1}{9} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{-\frac{17}{9}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{1}{3}=\frac{\sqrt{17}i}{3} x+\frac{1}{3}=-\frac{\sqrt{17}i}{3}
ലഘൂകരിക്കുക.
x=\frac{-1+\sqrt{17}i}{3} x=\frac{-\sqrt{17}i-1}{3}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{3} കുറയ്ക്കുക.