പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

6=7\left(x+1\right)x
7,2 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 14 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
6=\left(7x+7\right)x
x+1 കൊണ്ട് 7 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
6=7x^{2}+7x
x കൊണ്ട് 7x+7 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
7x^{2}+7x=6
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
7x^{2}+7x-6=0
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക.
x=\frac{-7±\sqrt{7^{2}-4\times 7\left(-6\right)}}{2\times 7}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 7 എന്നതും b എന്നതിനായി 7 എന്നതും c എന്നതിനായി -6 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-7±\sqrt{49-4\times 7\left(-6\right)}}{2\times 7}
7 സ്ക്വയർ ചെയ്യുക.
x=\frac{-7±\sqrt{49-28\left(-6\right)}}{2\times 7}
-4, 7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-7±\sqrt{49+168}}{2\times 7}
-28, -6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-7±\sqrt{217}}{2\times 7}
49, 168 എന്നതിൽ ചേർക്കുക.
x=\frac{-7±\sqrt{217}}{14}
2, 7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{217}-7}{14}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-7±\sqrt{217}}{14} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7, \sqrt{217} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{217}}{14}-\frac{1}{2}
14 കൊണ്ട് -7+\sqrt{217} എന്നതിനെ ഹരിക്കുക.
x=\frac{-\sqrt{217}-7}{14}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-7±\sqrt{217}}{14} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -7 എന്നതിൽ നിന്ന് \sqrt{217} വ്യവകലനം ചെയ്യുക.
x=-\frac{\sqrt{217}}{14}-\frac{1}{2}
14 കൊണ്ട് -7-\sqrt{217} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{217}}{14}-\frac{1}{2} x=-\frac{\sqrt{217}}{14}-\frac{1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
6=7\left(x+1\right)x
7,2 എന്നതിന്‍റെ ലഘുതമ സാധാരണ ഗുണിതമായ 14 ഉപയോഗിച്ച് സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
6=\left(7x+7\right)x
x+1 കൊണ്ട് 7 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
6=7x^{2}+7x
x കൊണ്ട് 7x+7 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
7x^{2}+7x=6
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\frac{7x^{2}+7x}{7}=\frac{6}{7}
ഇരുവശങ്ങളെയും 7 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{7}{7}x=\frac{6}{7}
7 കൊണ്ട് ഹരിക്കുന്നത്, 7 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+x=\frac{6}{7}
7 കൊണ്ട് 7 എന്നതിനെ ഹരിക്കുക.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{6}{7}+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 1-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{1}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+x+\frac{1}{4}=\frac{6}{7}+\frac{1}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{1}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+x+\frac{1}{4}=\frac{31}{28}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{6}{7} എന്നത് \frac{1}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{1}{2}\right)^{2}=\frac{31}{28}
x^{2}+x+\frac{1}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{31}{28}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{1}{2}=\frac{\sqrt{217}}{14} x+\frac{1}{2}=-\frac{\sqrt{217}}{14}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{217}}{14}-\frac{1}{2} x=-\frac{\sqrt{217}}{14}-\frac{1}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{1}{2} കുറയ്ക്കുക.