x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-1
x=6
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2\times 3+2x\times \frac{5}{2}=\frac{1}{2}x\times 2x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. x,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 2x ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
6+2x\times \frac{5}{2}=\frac{1}{2}x\times 2x
6 നേടാൻ 2, 3 എന്നിവ ഗുണിക്കുക.
6+5x=\frac{1}{2}x\times 2x
2, 2 എന്നിവ ഒഴിവാക്കുക.
6+5x=\frac{1}{2}x^{2}\times 2
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
6+5x=x^{2}
2, 2 എന്നിവ ഒഴിവാക്കുക.
6+5x-x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
-x^{2}+5x+6=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=5 ab=-6=-6
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -x^{2}+ax+bx+6 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,6 -2,3
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -6 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+6=5 -2+3=1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=6 b=-1
സൊല്യൂഷൻ എന്നത് 5 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-x^{2}+6x\right)+\left(-x+6\right)
-x^{2}+5x+6 എന്നത് \left(-x^{2}+6x\right)+\left(-x+6\right) എന്നായി തിരുത്തിയെഴുതുക.
-x\left(x-6\right)-\left(x-6\right)
ആദ്യ ഗ്രൂപ്പിലെ -x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-6\right)\left(-x-1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-6 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=6 x=-1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-6=0, -x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
2\times 3+2x\times \frac{5}{2}=\frac{1}{2}x\times 2x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. x,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 2x ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
6+2x\times \frac{5}{2}=\frac{1}{2}x\times 2x
6 നേടാൻ 2, 3 എന്നിവ ഗുണിക്കുക.
6+5x=\frac{1}{2}x\times 2x
2, 2 എന്നിവ ഒഴിവാക്കുക.
6+5x=\frac{1}{2}x^{2}\times 2
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
6+5x=x^{2}
2, 2 എന്നിവ ഒഴിവാക്കുക.
6+5x-x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
-x^{2}+5x+6=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -1 എന്നതും b എന്നതിനായി 5 എന്നതും c എന്നതിനായി 6 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 6}}{2\left(-1\right)}
5 സ്ക്വയർ ചെയ്യുക.
x=\frac{-5±\sqrt{25+4\times 6}}{2\left(-1\right)}
-4, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5±\sqrt{25+24}}{2\left(-1\right)}
4, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5±\sqrt{49}}{2\left(-1\right)}
25, 24 എന്നതിൽ ചേർക്കുക.
x=\frac{-5±7}{2\left(-1\right)}
49 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-5±7}{-2}
2, -1 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2}{-2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-5±7}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5, 7 എന്നതിൽ ചേർക്കുക.
x=-1
-2 കൊണ്ട് 2 എന്നതിനെ ഹരിക്കുക.
x=-\frac{12}{-2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-5±7}{-2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5 എന്നതിൽ നിന്ന് 7 വ്യവകലനം ചെയ്യുക.
x=6
-2 കൊണ്ട് -12 എന്നതിനെ ഹരിക്കുക.
x=-1 x=6
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
2\times 3+2x\times \frac{5}{2}=\frac{1}{2}x\times 2x
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. x,2 എന്നതിന്റെ ലഘുതമ സാധാരണ ഗുണിതമായ 2x ഉപയോഗിച്ച് സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും ഗുണിക്കുക.
6+2x\times \frac{5}{2}=\frac{1}{2}x\times 2x
6 നേടാൻ 2, 3 എന്നിവ ഗുണിക്കുക.
6+5x=\frac{1}{2}x\times 2x
2, 2 എന്നിവ ഒഴിവാക്കുക.
6+5x=\frac{1}{2}x^{2}\times 2
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
6+5x=x^{2}
2, 2 എന്നിവ ഒഴിവാക്കുക.
6+5x-x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
5x-x^{2}=-6
ഇരുവശങ്ങളിൽ നിന്നും 6 കുറയ്ക്കുക. പൂജ്യത്തിൽ നിന്ന് കിഴിക്കുന്ന എന്തിനും അതിന്റെ നെഗറ്റീവ് ഫലം ലഭിക്കുന്നു.
-x^{2}+5x=-6
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-x^{2}+5x}{-1}=-\frac{6}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{5}{-1}x=-\frac{6}{-1}
-1 കൊണ്ട് ഹരിക്കുന്നത്, -1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-5x=-\frac{6}{-1}
-1 കൊണ്ട് 5 എന്നതിനെ ഹരിക്കുക.
x^{2}-5x=6
-1 കൊണ്ട് -6 എന്നതിനെ ഹരിക്കുക.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -5-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{5}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{5}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
6, \frac{25}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
x^{2}-5x+\frac{25}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
ലഘൂകരിക്കുക.
x=6 x=-1
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{5}{2} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}