പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

18x^{2}-6x=0
9x-3 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x\left(18x-6\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=\frac{1}{3}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 18x-6=0 എന്നിവ സോൾവ് ചെയ്യുക.
18x^{2}-6x=0
9x-3 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 18}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 18 എന്നതും b എന്നതിനായി -6 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-6\right)±6}{2\times 18}
\left(-6\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{6±6}{2\times 18}
-6 എന്നതിന്‍റെ വിപരീതം 6 ആണ്.
x=\frac{6±6}{36}
2, 18 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{12}{36}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{6±6}{36} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6, 6 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{3}
12 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{12}{36} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{0}{36}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{6±6}{36} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 6 എന്നതിൽ നിന്ന് 6 വ്യവകലനം ചെയ്യുക.
x=0
36 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=\frac{1}{3} x=0
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
18x^{2}-6x=0
9x-3 കൊണ്ട് 2x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{18x^{2}-6x}{18}=\frac{0}{18}
ഇരുവശങ്ങളെയും 18 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{6}{18}\right)x=\frac{0}{18}
18 കൊണ്ട് ഹരിക്കുന്നത്, 18 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{1}{3}x=\frac{0}{18}
6 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-6}{18} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{1}{3}x=0
18 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{1}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{6} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{6} സ്ക്വയർ ചെയ്യുക.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
ലഘൂകരിക്കുക.
x=\frac{1}{3} x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{6} ചേർക്കുക.