പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

28x-4-49x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും 49x^{2} കുറയ്ക്കുക.
-49x^{2}+28x-4=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=28 ab=-49\left(-4\right)=196
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം -49x^{2}+ax+bx-4 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,196 2,98 4,49 7,28 14,14
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 196 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+196=197 2+98=100 4+49=53 7+28=35 14+14=28
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=14 b=14
സൊല്യൂഷൻ എന്നത് 28 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-49x^{2}+14x\right)+\left(14x-4\right)
-49x^{2}+28x-4 എന്നത് \left(-49x^{2}+14x\right)+\left(14x-4\right) എന്നായി തിരുത്തിയെഴുതുക.
-7x\left(7x-2\right)+2\left(7x-2\right)
ആദ്യ ഗ്രൂപ്പിലെ -7x എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(7x-2\right)\left(-7x+2\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 7x-2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{2}{7} x=\frac{2}{7}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 7x-2=0, -7x+2=0 എന്നിവ സോൾവ് ചെയ്യുക.
28x-4-49x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും 49x^{2} കുറയ്ക്കുക.
-49x^{2}+28x-4=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-28±\sqrt{28^{2}-4\left(-49\right)\left(-4\right)}}{2\left(-49\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -49 എന്നതും b എന്നതിനായി 28 എന്നതും c എന്നതിനായി -4 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-28±\sqrt{784-4\left(-49\right)\left(-4\right)}}{2\left(-49\right)}
28 സ്ക്വയർ ചെയ്യുക.
x=\frac{-28±\sqrt{784+196\left(-4\right)}}{2\left(-49\right)}
-4, -49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-28±\sqrt{784-784}}{2\left(-49\right)}
196, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-28±\sqrt{0}}{2\left(-49\right)}
784, -784 എന്നതിൽ ചേർക്കുക.
x=-\frac{28}{2\left(-49\right)}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=-\frac{28}{-98}
2, -49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2}{7}
14 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-28}{-98} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
28x-4-49x^{2}=0
ഇരുവശങ്ങളിൽ നിന്നും 49x^{2} കുറയ്ക്കുക.
28x-49x^{2}=4
4 ഇരു വശങ്ങളിലും ചേർക്കുക. പൂജ്യത്തോട് കൂട്ടുന്ന എന്തിനും അതുതന്നെ ലഭിക്കുന്നു.
-49x^{2}+28x=4
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-49x^{2}+28x}{-49}=\frac{4}{-49}
ഇരുവശങ്ങളെയും -49 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{28}{-49}x=\frac{4}{-49}
-49 കൊണ്ട് ഹരിക്കുന്നത്, -49 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{4}{7}x=\frac{4}{-49}
7 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{28}{-49} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}-\frac{4}{7}x=-\frac{4}{49}
-49 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{4}{7}x+\left(-\frac{2}{7}\right)^{2}=-\frac{4}{49}+\left(-\frac{2}{7}\right)^{2}
-\frac{2}{7} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{4}{7}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{2}{7} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{4}{7}x+\frac{4}{49}=\frac{-4+4}{49}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{2}{7} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{4}{7}x+\frac{4}{49}=0
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{4}{49} എന്നത് \frac{4}{49} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{2}{7}\right)^{2}=0
x^{2}-\frac{4}{7}x+\frac{4}{49} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{2}{7}\right)^{2}}=\sqrt{0}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{2}{7}=0 x-\frac{2}{7}=0
ലഘൂകരിക്കുക.
x=\frac{2}{7} x=\frac{2}{7}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{2}{7} ചേർക്കുക.
x=\frac{2}{7}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു. പരിഹാരങ്ങൾ ഒന്നുതന്നെയാണ്.