ഘടകം
\left(3-5a\right)^{3}
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(3-5a\right)^{3}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(5a-3\right)\left(-25a^{2}+30a-9\right)
പരിമേയ വർഗ്ഗസിദ്ധാന്തം പ്രകാരം, ഒരു ബഹുപദത്തിന്റെ എല്ലാ പരിമേയ വർഗ്ഗങ്ങളും \frac{p}{q} എന്ന രൂപത്തിലായിരിക്കും, അതിൽ 27 എന്ന സ്ഥിരാങ്ക പദത്തെ p എന്നതും -125 എന്ന ലീഡിംഗ് ഗുണാങ്കത്തെ q എന്നതും ഹരിക്കുന്നു. അത്തരം ഒരു വർഗ്ഗമാണ് \frac{3}{5}. ഒരു ബഹുപദത്തെ 5a-3 കൊണ്ട് ഹരിക്കുന്നതിലൂടെ അത് ഫാക്ടർ ചെയ്യുക.
p+q=30 pq=-25\left(-9\right)=225
-25a^{2}+30a-9 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം -25a^{2}+pa+qa-9 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. p, q എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,225 3,75 5,45 9,25 15,15
pq പോസിറ്റീവ് ആയതിനാൽ p, q എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. p+q പോസിറ്റീവ് ആയതിനാൽ p, q എന്നിവയ്ക്ക് രണ്ടും പോസിറ്റീവാണ്. 225 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
p=15 q=15
സൊല്യൂഷൻ എന്നത് 30 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(-25a^{2}+15a\right)+\left(15a-9\right)
-25a^{2}+30a-9 എന്നത് \left(-25a^{2}+15a\right)+\left(15a-9\right) എന്നായി തിരുത്തിയെഴുതുക.
-5a\left(5a-3\right)+3\left(5a-3\right)
ആദ്യ ഗ്രൂപ്പിലെ -5a എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5a-3\right)\left(-5a+3\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 5a-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-5a+3\right)\left(5a-3\right)^{2}
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}