x എന്നതിനായി സോൾവ് ചെയ്യുക
x = \frac{\sqrt{1561} - 11}{18} \approx 1.583860696
x=\frac{-\sqrt{1561}-11}{18}\approx -2.806082918
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
27x^{2}+33x-120=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-33±\sqrt{33^{2}-4\times 27\left(-120\right)}}{2\times 27}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 27 എന്നതും b എന്നതിനായി 33 എന്നതും c എന്നതിനായി -120 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-33±\sqrt{1089-4\times 27\left(-120\right)}}{2\times 27}
33 സ്ക്വയർ ചെയ്യുക.
x=\frac{-33±\sqrt{1089-108\left(-120\right)}}{2\times 27}
-4, 27 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-33±\sqrt{1089+12960}}{2\times 27}
-108, -120 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-33±\sqrt{14049}}{2\times 27}
1089, 12960 എന്നതിൽ ചേർക്കുക.
x=\frac{-33±3\sqrt{1561}}{2\times 27}
14049 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-33±3\sqrt{1561}}{54}
2, 27 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{3\sqrt{1561}-33}{54}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-33±3\sqrt{1561}}{54} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -33, 3\sqrt{1561} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{1561}-11}{18}
54 കൊണ്ട് -33+3\sqrt{1561} എന്നതിനെ ഹരിക്കുക.
x=\frac{-3\sqrt{1561}-33}{54}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-33±3\sqrt{1561}}{54} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -33 എന്നതിൽ നിന്ന് 3\sqrt{1561} വ്യവകലനം ചെയ്യുക.
x=\frac{-\sqrt{1561}-11}{18}
54 കൊണ്ട് -33-3\sqrt{1561} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{1561}-11}{18} x=\frac{-\sqrt{1561}-11}{18}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
27x^{2}+33x-120=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
27x^{2}+33x-120-\left(-120\right)=-\left(-120\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 120 ചേർക്കുക.
27x^{2}+33x=-\left(-120\right)
അതിൽ നിന്നുതന്നെ -120 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
27x^{2}+33x=120
0 എന്നതിൽ നിന്ന് -120 വ്യവകലനം ചെയ്യുക.
\frac{27x^{2}+33x}{27}=\frac{120}{27}
ഇരുവശങ്ങളെയും 27 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{33}{27}x=\frac{120}{27}
27 കൊണ്ട് ഹരിക്കുന്നത്, 27 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{11}{9}x=\frac{120}{27}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{33}{27} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}+\frac{11}{9}x=\frac{40}{9}
3 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{120}{27} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x^{2}+\frac{11}{9}x+\left(\frac{11}{18}\right)^{2}=\frac{40}{9}+\left(\frac{11}{18}\right)^{2}
\frac{11}{18} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{11}{9}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{11}{18} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{40}{9}+\frac{121}{324}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{11}{18} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{1561}{324}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{40}{9} എന്നത് \frac{121}{324} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{11}{18}\right)^{2}=\frac{1561}{324}
x^{2}+\frac{11}{9}x+\frac{121}{324} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{11}{18}\right)^{2}}=\sqrt{\frac{1561}{324}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{11}{18}=\frac{\sqrt{1561}}{18} x+\frac{11}{18}=-\frac{\sqrt{1561}}{18}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{1561}-11}{18} x=\frac{-\sqrt{1561}-11}{18}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{11}{18} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}