ഘടകം
\left(5n-3\right)^{2}
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(5n-3\right)^{2}
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
a+b=-30 ab=25\times 9=225
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 25n^{2}+an+bn+9 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. 225 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-15 b=-15
സൊല്യൂഷൻ എന്നത് -30 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(25n^{2}-15n\right)+\left(-15n+9\right)
25n^{2}-30n+9 എന്നത് \left(25n^{2}-15n\right)+\left(-15n+9\right) എന്നായി തിരുത്തിയെഴുതുക.
5n\left(5n-3\right)-3\left(5n-3\right)
ആദ്യ ഗ്രൂപ്പിലെ 5n എന്നതും രണ്ടാമത്തേതിലെ -3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5n-3\right)\left(5n-3\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 5n-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5n-3\right)^{2}
ഒരു ബിനോമിനൽ സ്ക്വയറായി മാറ്റിയെഴുതുക.
factor(25n^{2}-30n+9)
ഈ ട്രിനോമിനലിന് ഒരു ട്രിനോമിനൽ സ്ക്വയറിന്റെ രൂപമാണുള്ളത്, ഒരുപക്ഷേ, ഒരു പൊതു ഘടകം കൊണ്ട് ഗുണിക്കാനായേക്കും. മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങൾ കണ്ടെത്തി ട്രിനോമിനൽ സ്ക്വയറുകൾ ഘടകമാക്കാൻ കഴിഞ്ഞേക്കും.
gcf(25,-30,9)=1
കോഎഫിഷ്യന്റുകളുടെ ഉത്തമ സാധാരണ ഘടകം കണ്ടെത്തുക.
\sqrt{25n^{2}}=5n
25n^{2} എന്ന ലീഡിംഗ് പദത്തിന്റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\sqrt{9}=3
9 എന്ന ട്രെയ്ലിംഗ് പദത്തിന്റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
\left(5n-3\right)^{2}
ട്രിനോമിനൽ സ്ക്വയർ എന്നത് ട്രിനോമിനൽ സ്ക്വയറിന്റെ മധ്യ പദ ചിഹ്നം നിർണ്ണയിക്കുന്ന ചിഹ്നം ഉപയോഗിച്ചുള്ള മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങളുടെ ആകെത്തുകയോ വ്യത്യാസമോ ആയ ബിനോമിനലിന്റെ സ്ക്വയർ ആണ്.
25n^{2}-30n+9=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
n=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 25\times 9}}{2\times 25}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
n=\frac{-\left(-30\right)±\sqrt{900-4\times 25\times 9}}{2\times 25}
-30 സ്ക്വയർ ചെയ്യുക.
n=\frac{-\left(-30\right)±\sqrt{900-100\times 9}}{2\times 25}
-4, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
n=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 25}
-100, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
n=\frac{-\left(-30\right)±\sqrt{0}}{2\times 25}
900, -900 എന്നതിൽ ചേർക്കുക.
n=\frac{-\left(-30\right)±0}{2\times 25}
0 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
n=\frac{30±0}{2\times 25}
-30 എന്നതിന്റെ വിപരീതം 30 ആണ്.
n=\frac{30±0}{50}
2, 25 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
25n^{2}-30n+9=25\left(n-\frac{3}{5}\right)\left(n-\frac{3}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി \frac{3}{5} എന്നതും, x_{2}-നായി \frac{3}{5} എന്നതും പകരം വയ്ക്കുക.
25n^{2}-30n+9=25\times \frac{5n-3}{5}\left(n-\frac{3}{5}\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് n എന്നതിൽ നിന്ന് \frac{3}{5} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
25n^{2}-30n+9=25\times \frac{5n-3}{5}\times \frac{5n-3}{5}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് n എന്നതിൽ നിന്ന് \frac{3}{5} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
25n^{2}-30n+9=25\times \frac{\left(5n-3\right)\left(5n-3\right)}{5\times 5}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{5n-3}{5}, \frac{5n-3}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
25n^{2}-30n+9=25\times \frac{\left(5n-3\right)\left(5n-3\right)}{25}
5, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
25n^{2}-30n+9=\left(5n-3\right)\left(5n-3\right)
25, 25 എന്നിവയിലെ 25 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}