ഘടകം
5x\left(2y-3\right)\left(2y+1\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
5x\left(2y-3\right)\left(2y+1\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
5\left(4xy^{2}-4xy-3x\right)
5 ഘടക ലഘൂകരണം ചെയ്യുക.
x\left(4y^{2}-4y-3\right)
4xy^{2}-4xy-3x പരിഗണിക്കുക. x ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=-4 ab=4\left(-3\right)=-12
4y^{2}-4y-3 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 4y^{2}+ay+by-3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-12 2,-6 3,-4
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -12 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-12=-11 2-6=-4 3-4=-1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-6 b=2
സൊല്യൂഷൻ എന്നത് -4 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(4y^{2}-6y\right)+\left(2y-3\right)
4y^{2}-4y-3 എന്നത് \left(4y^{2}-6y\right)+\left(2y-3\right) എന്നായി തിരുത്തിയെഴുതുക.
2y\left(2y-3\right)+2y-3
4y^{2}-6y എന്നതിൽ 2y ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2y-3\right)\left(2y+1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2y-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
5x\left(2y-3\right)\left(2y+1\right)
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}