പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
y എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2019=xy^{2}+xy+x
y^{2}+y+1 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
xy^{2}+xy+x=2019
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\left(y^{2}+y+1\right)x=2019
x അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(y^{2}+y+1\right)x}{y^{2}+y+1}=\frac{2019}{y^{2}+y+1}
ഇരുവശങ്ങളെയും y^{2}+y+1 കൊണ്ട് ഹരിക്കുക.
x=\frac{2019}{y^{2}+y+1}
y^{2}+y+1 കൊണ്ട് ഹരിക്കുന്നത്, y^{2}+y+1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
2019=xy^{2}+xy+x
y^{2}+y+1 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
xy^{2}+xy+x=2019
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\left(y^{2}+y+1\right)x=2019
x അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(y^{2}+y+1\right)x}{y^{2}+y+1}=\frac{2019}{y^{2}+y+1}
ഇരുവശങ്ങളെയും y^{2}+y+1 കൊണ്ട് ഹരിക്കുക.
x=\frac{2019}{y^{2}+y+1}
y^{2}+y+1 കൊണ്ട് ഹരിക്കുന്നത്, y^{2}+y+1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.