x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\frac{2019}{y^{2}+y+1}
y\neq \frac{-1+\sqrt{3}i}{2}\text{ and }y\neq \frac{-\sqrt{3}i-1}{2}
x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{2019}{y^{2}+y+1}
y എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
y=\frac{\sqrt{8076x-3x^{2}}}{2x}-\frac{1}{2}
y=-\frac{\sqrt{8076x-3x^{2}}}{2x}-\frac{1}{2}\text{, }x\neq 0
y എന്നതിനായി സോൾവ് ചെയ്യുക
y=\frac{\sqrt{-3+\frac{8076}{x}}-1}{2}
y=\frac{-\sqrt{-3+\frac{8076}{x}}-1}{2}\text{, }x>0\text{ and }x\leq 2692
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2019=xy^{2}+xy+x
y^{2}+y+1 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
xy^{2}+xy+x=2019
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\left(y^{2}+y+1\right)x=2019
x അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(y^{2}+y+1\right)x}{y^{2}+y+1}=\frac{2019}{y^{2}+y+1}
ഇരുവശങ്ങളെയും y^{2}+y+1 കൊണ്ട് ഹരിക്കുക.
x=\frac{2019}{y^{2}+y+1}
y^{2}+y+1 കൊണ്ട് ഹരിക്കുന്നത്, y^{2}+y+1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
2019=xy^{2}+xy+x
y^{2}+y+1 കൊണ്ട് x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
xy^{2}+xy+x=2019
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\left(y^{2}+y+1\right)x=2019
x അടങ്ങുന്ന എല്ലാ പദങ്ങളും യോജിപ്പിക്കുക.
\frac{\left(y^{2}+y+1\right)x}{y^{2}+y+1}=\frac{2019}{y^{2}+y+1}
ഇരുവശങ്ങളെയും y^{2}+y+1 കൊണ്ട് ഹരിക്കുക.
x=\frac{2019}{y^{2}+y+1}
y^{2}+y+1 കൊണ്ട് ഹരിക്കുന്നത്, y^{2}+y+1 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}