പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2y^{2}-y+2=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
y=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times 2}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -1 എന്നതും c എന്നതിനായി 2 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
y=\frac{-\left(-1\right)±\sqrt{1-8\times 2}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-\left(-1\right)±\sqrt{1-16}}{2\times 2}
-8, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{-\left(-1\right)±\sqrt{-15}}{2\times 2}
1, -16 എന്നതിൽ ചേർക്കുക.
y=\frac{-\left(-1\right)±\sqrt{15}i}{2\times 2}
-15 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
y=\frac{1±\sqrt{15}i}{2\times 2}
-1 എന്നതിന്‍റെ വിപരീതം 1 ആണ്.
y=\frac{1±\sqrt{15}i}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
y=\frac{1+\sqrt{15}i}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, y=\frac{1±\sqrt{15}i}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1, i\sqrt{15} എന്നതിൽ ചേർക്കുക.
y=\frac{-\sqrt{15}i+1}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, y=\frac{1±\sqrt{15}i}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 1 എന്നതിൽ നിന്ന് i\sqrt{15} വ്യവകലനം ചെയ്യുക.
y=\frac{1+\sqrt{15}i}{4} y=\frac{-\sqrt{15}i+1}{4}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2y^{2}-y+2=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
2y^{2}-y+2-2=-2
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
2y^{2}-y=-2
അതിൽ നിന്നുതന്നെ 2 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{2y^{2}-y}{2}=-\frac{2}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
y^{2}-\frac{1}{2}y=-\frac{2}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
y^{2}-\frac{1}{2}y=-1
2 കൊണ്ട് -2 എന്നതിനെ ഹരിക്കുക.
y^{2}-\frac{1}{2}y+\left(-\frac{1}{4}\right)^{2}=-1+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{1}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
y^{2}-\frac{1}{2}y+\frac{1}{16}=-1+\frac{1}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{4} സ്ക്വയർ ചെയ്യുക.
y^{2}-\frac{1}{2}y+\frac{1}{16}=-\frac{15}{16}
-1, \frac{1}{16} എന്നതിൽ ചേർക്കുക.
\left(y-\frac{1}{4}\right)^{2}=-\frac{15}{16}
y^{2}-\frac{1}{2}y+\frac{1}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(y-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
y-\frac{1}{4}=\frac{\sqrt{15}i}{4} y-\frac{1}{4}=-\frac{\sqrt{15}i}{4}
ലഘൂകരിക്കുക.
y=\frac{1+\sqrt{15}i}{4} y=\frac{-\sqrt{15}i+1}{4}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{4} ചേർക്കുക.