പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x^{2}-34x=-22
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
2x^{2}-34x-\left(-22\right)=-22-\left(-22\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 22 ചേർക്കുക.
2x^{2}-34x-\left(-22\right)=0
അതിൽ നിന്നുതന്നെ -22 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
2x^{2}-34x+22=0
0 എന്നതിൽ നിന്ന് -22 വ്യവകലനം ചെയ്യുക.
x=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 22}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -34 എന്നതും c എന്നതിനായി 22 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 22}}{2\times 2}
-34 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-34\right)±\sqrt{1156-8\times 22}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-34\right)±\sqrt{1156-176}}{2\times 2}
-8, 22 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-34\right)±\sqrt{980}}{2\times 2}
1156, -176 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-34\right)±14\sqrt{5}}{2\times 2}
980 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{34±14\sqrt{5}}{2\times 2}
-34 എന്നതിന്‍റെ വിപരീതം 34 ആണ്.
x=\frac{34±14\sqrt{5}}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{14\sqrt{5}+34}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{34±14\sqrt{5}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 34, 14\sqrt{5} എന്നതിൽ ചേർക്കുക.
x=\frac{7\sqrt{5}+17}{2}
4 കൊണ്ട് 34+14\sqrt{5} എന്നതിനെ ഹരിക്കുക.
x=\frac{34-14\sqrt{5}}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{34±14\sqrt{5}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 34 എന്നതിൽ നിന്ന് 14\sqrt{5} വ്യവകലനം ചെയ്യുക.
x=\frac{17-7\sqrt{5}}{2}
4 കൊണ്ട് 34-14\sqrt{5} എന്നതിനെ ഹരിക്കുക.
x=\frac{7\sqrt{5}+17}{2} x=\frac{17-7\sqrt{5}}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2x^{2}-34x=-22
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{2x^{2}-34x}{2}=-\frac{22}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{34}{2}\right)x=-\frac{22}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-17x=-\frac{22}{2}
2 കൊണ്ട് -34 എന്നതിനെ ഹരിക്കുക.
x^{2}-17x=-11
2 കൊണ്ട് -22 എന്നതിനെ ഹരിക്കുക.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-11+\left(-\frac{17}{2}\right)^{2}
-\frac{17}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -17-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{17}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-17x+\frac{289}{4}=-11+\frac{289}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{17}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-17x+\frac{289}{4}=\frac{245}{4}
-11, \frac{289}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{17}{2}\right)^{2}=\frac{245}{4}
x^{2}-17x+\frac{289}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{245}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{17}{2}=\frac{7\sqrt{5}}{2} x-\frac{17}{2}=-\frac{7\sqrt{5}}{2}
ലഘൂകരിക്കുക.
x=\frac{7\sqrt{5}+17}{2} x=\frac{17-7\sqrt{5}}{2}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{17}{2} ചേർക്കുക.