x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\frac{1}{2}=0.5
x=7
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2x^{2}-15x+7=0
7 ഇരു വശങ്ങളിലും ചേർക്കുക.
a+b=-15 ab=2\times 7=14
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 2x^{2}+ax+bx+7 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-14 -2,-7
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. 14 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-14=-15 -2-7=-9
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-14 b=-1
സൊല്യൂഷൻ എന്നത് -15 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(2x^{2}-14x\right)+\left(-x+7\right)
2x^{2}-15x+7 എന്നത് \left(2x^{2}-14x\right)+\left(-x+7\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(x-7\right)-\left(x-7\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-7\right)\left(2x-1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-7 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=7 x=\frac{1}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-7=0, 2x-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
2x^{2}-15x=-7
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
2x^{2}-15x-\left(-7\right)=-7-\left(-7\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 7 ചേർക്കുക.
2x^{2}-15x-\left(-7\right)=0
അതിൽ നിന്നുതന്നെ -7 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
2x^{2}-15x+7=0
0 എന്നതിൽ നിന്ന് -7 വ്യവകലനം ചെയ്യുക.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 2\times 7}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -15 എന്നതും c എന്നതിനായി 7 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 2\times 7}}{2\times 2}
-15 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-15\right)±\sqrt{225-8\times 7}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-15\right)±\sqrt{225-56}}{2\times 2}
-8, 7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-15\right)±\sqrt{169}}{2\times 2}
225, -56 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-15\right)±13}{2\times 2}
169 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{15±13}{2\times 2}
-15 എന്നതിന്റെ വിപരീതം 15 ആണ്.
x=\frac{15±13}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{28}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{15±13}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 15, 13 എന്നതിൽ ചേർക്കുക.
x=7
4 കൊണ്ട് 28 എന്നതിനെ ഹരിക്കുക.
x=\frac{2}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{15±13}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 15 എന്നതിൽ നിന്ന് 13 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{2}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=7 x=\frac{1}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
2x^{2}-15x=-7
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{2x^{2}-15x}{2}=-\frac{7}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}-\frac{15}{2}x=-\frac{7}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{15}{2}x+\left(-\frac{15}{4}\right)^{2}=-\frac{7}{2}+\left(-\frac{15}{4}\right)^{2}
-\frac{15}{4} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{15}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{15}{4} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{15}{2}x+\frac{225}{16}=-\frac{7}{2}+\frac{225}{16}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{15}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{169}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{7}{2} എന്നത് \frac{225}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{15}{4}\right)^{2}=\frac{169}{16}
x^{2}-\frac{15}{2}x+\frac{225}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{15}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{15}{4}=\frac{13}{4} x-\frac{15}{4}=-\frac{13}{4}
ലഘൂകരിക്കുക.
x=7 x=\frac{1}{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{15}{4} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}