പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x^{2}-\frac{3}{2}x+\frac{7}{10}=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times 2\times \frac{7}{10}}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -\frac{3}{2} എന്നതും c എന്നതിനായി \frac{7}{10} എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times 2\times \frac{7}{10}}}{2\times 2}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-8\times \frac{7}{10}}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-\frac{28}{5}}}{2\times 2}
-8, \frac{7}{10} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{-\frac{67}{20}}}{2\times 2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{9}{4} എന്നത് -\frac{28}{5} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{335}i}{10}}{2\times 2}
-\frac{67}{20} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{2\times 2}
-\frac{3}{2} എന്നതിന്‍റെ വിപരീതം \frac{3}{2} ആണ്.
x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\frac{\sqrt{335}i}{10}+\frac{3}{2}}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{3}{2}, \frac{i\sqrt{335}}{10} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8}
4 കൊണ്ട് \frac{3}{2}+\frac{i\sqrt{335}}{10} എന്നതിനെ ഹരിക്കുക.
x=\frac{-\frac{\sqrt{335}i}{10}+\frac{3}{2}}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{\frac{3}{2}±\frac{\sqrt{335}i}{10}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. \frac{3}{2} എന്നതിൽ നിന്ന് \frac{i\sqrt{335}}{10} വ്യവകലനം ചെയ്യുക.
x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
4 കൊണ്ട് \frac{3}{2}-\frac{i\sqrt{335}}{10} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8} x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2x^{2}-\frac{3}{2}x+\frac{7}{10}=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
2x^{2}-\frac{3}{2}x+\frac{7}{10}-\frac{7}{10}=-\frac{7}{10}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{7}{10} കുറയ്ക്കുക.
2x^{2}-\frac{3}{2}x=-\frac{7}{10}
അതിൽ നിന്നുതന്നെ \frac{7}{10} കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{2x^{2}-\frac{3}{2}x}{2}=-\frac{\frac{7}{10}}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{\frac{3}{2}}{2}\right)x=-\frac{\frac{7}{10}}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-\frac{3}{4}x=-\frac{\frac{7}{10}}{2}
2 കൊണ്ട് -\frac{3}{2} എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{3}{4}x=-\frac{7}{20}
2 കൊണ്ട് -\frac{7}{10} എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=-\frac{7}{20}+\left(-\frac{3}{8}\right)^{2}
-\frac{3}{8} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -\frac{3}{4}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{3}{8} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{7}{20}+\frac{9}{64}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{8} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{3}{4}x+\frac{9}{64}=-\frac{67}{320}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{7}{20} എന്നത് \frac{9}{64} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{3}{8}\right)^{2}=-\frac{67}{320}
x^{2}-\frac{3}{4}x+\frac{9}{64} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{-\frac{67}{320}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{8}=\frac{\sqrt{335}i}{40} x-\frac{3}{8}=-\frac{\sqrt{335}i}{40}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{335}i}{40}+\frac{3}{8} x=-\frac{\sqrt{335}i}{40}+\frac{3}{8}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{3}{8} ചേർക്കുക.