പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=5 ab=2\left(-12\right)=-24
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 2x^{2}+ax+bx-12 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,24 -2,12 -3,8 -4,6
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -24 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-3 b=8
സൊല്യൂഷൻ എന്നത് 5 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(2x^{2}-3x\right)+\left(8x-12\right)
2x^{2}+5x-12 എന്നത് \left(2x^{2}-3x\right)+\left(8x-12\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(2x-3\right)+4\left(2x-3\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 4 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2x-3\right)\left(x+4\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2x-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=\frac{3}{2} x=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 2x-3=0, x+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
2x^{2}+5x-12=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി 5 എന്നതും c എന്നതിനായി -12 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
5 സ്ക്വയർ ചെയ്യുക.
x=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5±\sqrt{25+96}}{2\times 2}
-8, -12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-5±\sqrt{121}}{2\times 2}
25, 96 എന്നതിൽ ചേർക്കുക.
x=\frac{-5±11}{2\times 2}
121 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-5±11}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{6}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-5±11}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5, 11 എന്നതിൽ ചേർക്കുക.
x=\frac{3}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{6}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{16}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-5±11}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -5 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=-4
4 കൊണ്ട് -16 എന്നതിനെ ഹരിക്കുക.
x=\frac{3}{2} x=-4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2x^{2}+5x-12=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
2x^{2}+5x-12-\left(-12\right)=-\left(-12\right)
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 12 ചേർക്കുക.
2x^{2}+5x=-\left(-12\right)
അതിൽ നിന്നുതന്നെ -12 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
2x^{2}+5x=12
0 എന്നതിൽ നിന്ന് -12 വ്യവകലനം ചെയ്യുക.
\frac{2x^{2}+5x}{2}=\frac{12}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{5}{2}x=\frac{12}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{5}{2}x=6
2 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=6+\left(\frac{5}{4}\right)^{2}
\frac{5}{4} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{5}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{5}{4} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{5}{2}x+\frac{25}{16}=6+\frac{25}{16}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{5}{4} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{121}{16}
6, \frac{25}{16} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{5}{4}\right)^{2}=\frac{121}{16}
x^{2}+\frac{5}{2}x+\frac{25}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{5}{4}=\frac{11}{4} x+\frac{5}{4}=-\frac{11}{4}
ലഘൂകരിക്കുക.
x=\frac{3}{2} x=-4
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{5}{4} കുറയ്ക്കുക.