പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=23 ab=2\times 51=102
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 2x^{2}+ax+bx+51 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,102 2,51 3,34 6,17
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 102 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+102=103 2+51=53 3+34=37 6+17=23
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=6 b=17
സൊല്യൂഷൻ എന്നത് 23 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(2x^{2}+6x\right)+\left(17x+51\right)
2x^{2}+23x+51 എന്നത് \left(2x^{2}+6x\right)+\left(17x+51\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(x+3\right)+17\left(x+3\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ 17 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x+3\right)\left(2x+17\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x+3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
2x^{2}+23x+51=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-23±\sqrt{23^{2}-4\times 2\times 51}}{2\times 2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-23±\sqrt{529-4\times 2\times 51}}{2\times 2}
23 സ്ക്വയർ ചെയ്യുക.
x=\frac{-23±\sqrt{529-8\times 51}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-23±\sqrt{529-408}}{2\times 2}
-8, 51 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-23±\sqrt{121}}{2\times 2}
529, -408 എന്നതിൽ ചേർക്കുക.
x=\frac{-23±11}{2\times 2}
121 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-23±11}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{12}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-23±11}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -23, 11 എന്നതിൽ ചേർക്കുക.
x=-3
4 കൊണ്ട് -12 എന്നതിനെ ഹരിക്കുക.
x=-\frac{34}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-23±11}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -23 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=-\frac{17}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-34}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
2x^{2}+23x+51=2\left(x-\left(-3\right)\right)\left(x-\left(-\frac{17}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -3 എന്നതും, x_{2}-നായി -\frac{17}{2} എന്നതും പകരം വയ്‌ക്കുക.
2x^{2}+23x+51=2\left(x+3\right)\left(x+\frac{17}{2}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
2x^{2}+23x+51=2\left(x+3\right)\times \frac{2x+17}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{17}{2} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
2x^{2}+23x+51=\left(x+3\right)\left(2x+17\right)
2, 2 എന്നിവയിലെ 2 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.