x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\frac{-3+7\sqrt{167}i}{32}\approx -0.09375+2.826872996i
x=\frac{-7\sqrt{167}i-3}{32}\approx -0.09375-2.826872996i
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2x^{2}+\frac{3}{8}x+16=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\frac{3}{8}±\sqrt{\left(\frac{3}{8}\right)^{2}-4\times 2\times 16}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി \frac{3}{8} എന്നതും c എന്നതിനായി 16 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-4\times 2\times 16}}{2\times 2}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{3}{8} സ്ക്വയർ ചെയ്യുക.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-8\times 16}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-128}}{2\times 2}
-8, 16 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\frac{3}{8}±\sqrt{-\frac{8183}{64}}}{2\times 2}
\frac{9}{64}, -128 എന്നതിൽ ചേർക്കുക.
x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{2\times 2}
-\frac{8183}{64} എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-3+7\sqrt{167}i}{4\times 8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -\frac{3}{8}, \frac{7i\sqrt{167}}{8} എന്നതിൽ ചേർക്കുക.
x=\frac{-3+7\sqrt{167}i}{32}
4 കൊണ്ട് \frac{-3+7i\sqrt{167}}{8} എന്നതിനെ ഹരിക്കുക.
x=\frac{-7\sqrt{167}i-3}{4\times 8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -\frac{3}{8} എന്നതിൽ നിന്ന് \frac{7i\sqrt{167}}{8} വ്യവകലനം ചെയ്യുക.
x=\frac{-7\sqrt{167}i-3}{32}
4 കൊണ്ട് \frac{-3-7i\sqrt{167}}{8} എന്നതിനെ ഹരിക്കുക.
x=\frac{-3+7\sqrt{167}i}{32} x=\frac{-7\sqrt{167}i-3}{32}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
2x^{2}+\frac{3}{8}x+16=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
2x^{2}+\frac{3}{8}x+16-16=-16
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 16 കുറയ്ക്കുക.
2x^{2}+\frac{3}{8}x=-16
അതിൽ നിന്നുതന്നെ 16 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{2x^{2}+\frac{3}{8}x}{2}=-\frac{16}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{\frac{3}{8}}{2}x=-\frac{16}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}+\frac{3}{16}x=-\frac{16}{2}
2 കൊണ്ട് \frac{3}{8} എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{3}{16}x=-8
2 കൊണ്ട് -16 എന്നതിനെ ഹരിക്കുക.
x^{2}+\frac{3}{16}x+\left(\frac{3}{32}\right)^{2}=-8+\left(\frac{3}{32}\right)^{2}
\frac{3}{32} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ \frac{3}{16}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും \frac{3}{32} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{3}{16}x+\frac{9}{1024}=-8+\frac{9}{1024}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{3}{32} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{3}{16}x+\frac{9}{1024}=-\frac{8183}{1024}
-8, \frac{9}{1024} എന്നതിൽ ചേർക്കുക.
\left(x+\frac{3}{32}\right)^{2}=-\frac{8183}{1024}
x^{2}+\frac{3}{16}x+\frac{9}{1024} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{3}{32}\right)^{2}}=\sqrt{-\frac{8183}{1024}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{3}{32}=\frac{7\sqrt{167}i}{32} x+\frac{3}{32}=-\frac{7\sqrt{167}i}{32}
ലഘൂകരിക്കുക.
x=\frac{-3+7\sqrt{167}i}{32} x=\frac{-7\sqrt{167}i-3}{32}
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3}{32} കുറയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}