പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x, y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2x+3y=6,6x-5y=4
വ്യവകലനം ഉപയോഗിച്ച് ഒരു ജോടി സമവാക്യങ്ങൾ സോൾവ് ചെയ്യാൻ, ആദ്യം വേരിയബിളുകളിൽ ഒന്നിനായി സമവാക്യങ്ങളിലൊന്ന് സോൾവ് ചെയ്യുക. തുടർന്ന്, രണ്ടാമത്തെ സമവാക്യത്തിലെ ആ വേരിയബിളിനുള്ള ഫലം സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2x+3y=6
സമവാക്യങ്ങളിലൊന്ന് നോക്കിയെടുത്ത്, സമചിഹ്നത്തിന്‍റെ ഇടതുഭാഗത്തുള്ള x മാറ്റിനിർത്തിക്കൊണ്ട് x എന്നതിനായി അത് സോൾവ് ചെയ്യുക.
2x=-3y+6
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 3y കുറയ്ക്കുക.
x=\frac{1}{2}\left(-3y+6\right)
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
x=-\frac{3}{2}y+3
\frac{1}{2}, -3y+6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
6\left(-\frac{3}{2}y+3\right)-5y=4
6x-5y=4 എന്ന മറ്റ് സമവാക്യങ്ങളിൽ x എന്നതിനായി -\frac{3y}{2}+3 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
-9y+18-5y=4
6, -\frac{3y}{2}+3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
-14y+18=4
-9y, -5y എന്നതിൽ ചേർക്കുക.
-14y=-14
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 18 കുറയ്ക്കുക.
y=1
ഇരുവശങ്ങളെയും -14 കൊണ്ട് ഹരിക്കുക.
x=-\frac{3}{2}+3
x=-\frac{3}{2}y+3 എന്നതിലെ y എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
x=\frac{3}{2}
3, -\frac{3}{2} എന്നതിൽ ചേർക്കുക.
x=\frac{3}{2},y=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.
2x+3y=6,6x-5y=4
സമവാക്യങ്ങൾ സാധാരണ രൂപത്തിൽ നൽകിയ ശേഷം സമവാക്യ ഘടന സോൾവ് ചെയ്യാനുള്ള മെട്രീസുകൾ ഉപയോഗിക്കുക.
\left(\begin{matrix}2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
സമവാക്യങ്ങൾ മെട്രിക്സ് രൂപത്തിൽ എഴുതുക.
inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
\left(\begin{matrix}2&3\\6&-5\end{matrix}\right) എന്നതിന്‍റെ വിപരീത മെട്രിക്‌സ് കൊണ്ട് സമവാക്യത്തിന്‍റെ ഇടതുഭാഗം ഗുണിക്കുക.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
ഒരു മെട്രിക്‌സിന്‍റെയും അതിന്‍റെ വിപരീതത്തിന്‍റെയും ഗുണനഫലം അനന്യതാ മെട്രിക്‌സ് ആണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
സമചിഹ്നത്തിന് ഇടതുഭാഗത്തുള്ള മെട്രിക്‌സുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-3\times 6}&-\frac{3}{2\left(-5\right)-3\times 6}\\-\frac{6}{2\left(-5\right)-3\times 6}&\frac{2}{2\left(-5\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
2\times 2 മെട്രിക്സ് \left(\begin{matrix}a&b\\c&d\end{matrix}\right) എന്നതിനുള്ള, വിപരീത മെട്രിക്സ് \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ആണ്, അതിനാൽ മെട്രിക്സ് സമവാക്യം ഒരു മെട്രിക്സ് ഗുണന പ്രശ്നമായി മാറ്റിയെഴുതാവുന്നതാണ്.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{28}&\frac{3}{28}\\\frac{3}{14}&-\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
ഗണിതം ചെയ്യുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{28}\times 6+\frac{3}{28}\times 4\\\frac{3}{14}\times 6-\frac{1}{14}\times 4\end{matrix}\right)
മെട്രീസുകൾ ഗുണിക്കുക.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\1\end{matrix}\right)
ഗണിതം ചെയ്യുക.
x=\frac{3}{2},y=1
x, y എന്നീ മെട്രിക്സ് ഘടകാംശങ്ങൾ വേർതിരിച്ചെടുക്കുക.
2x+3y=6,6x-5y=4
എലിമിനേഷൻ ഉപയോഗിച്ച് സോൾവ് ചെയ്യുന്നതിന്, വേരിയബിളുകളിൽ ഒന്നിന്റെ കോഎഫിഷ്യന്റുകൾ ഇരുസമവാക്യങ്ങളിലും ഒന്നുതന്നെയായിരിക്കണം, എന്നാൽ മാത്രമേ ഒരു സമവാക്യം മറ്റൊന്നിൽ നിന്നും വ്യവകലനം ചെയ്യുമ്പോൾ വേരിയബിൾ റദ്ദാക്കപ്പെടുകയുള്ളൂ.
6\times 2x+6\times 3y=6\times 6,2\times 6x+2\left(-5\right)y=2\times 4
2x, 6x എന്നിവ തുല്യമാക്കാൻ, ആദ്യ സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 6 കൊണ്ടും രണ്ടാമത്തേതിന്‍റെ ഇരുവശങ്ങളിലെ എല്ലാ പദങ്ങളെയും 2 കൊണ്ടും ഗുണിക്കുക.
12x+18y=36,12x-10y=8
ലഘൂകരിക്കുക.
12x-12x+18y+10y=36-8
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിലുമുള്ള ഒരുപോലുള്ള പദങ്ങൾ കുറച്ച് 12x+18y=36 എന്നതിൽ നിന്ന് 12x-10y=8 കുറയ്ക്കുക.
18y+10y=36-8
12x, -12x എന്നതിൽ ചേർക്കുക. 12x, -12x എന്നീ പദങ്ങൾ റദ്ദാക്കപ്പെട്ടു, സോൾവ് ചെയ്യാനാകുന്ന ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ള സമവാക്യം നൽകുന്നു.
28y=36-8
18y, 10y എന്നതിൽ ചേർക്കുക.
28y=28
36, -8 എന്നതിൽ ചേർക്കുക.
y=1
ഇരുവശങ്ങളെയും 28 കൊണ്ട് ഹരിക്കുക.
6x-5=4
6x-5y=4 എന്നതിലെ y എന്നതിനായി 1 സബ്‌സ്‌റ്റിറ്റ്യൂട്ട് ചെയ്യുക. സംജാതമാകുന്ന സമവാക്യത്തിൽ ഒരേയൊരു വേരിയബിൾ മാത്രമുള്ളതിനാൽ, നിങ്ങൾക്ക് x എന്നതിനായി നേരിട്ട് സോൾവ് ചെയ്യാനാകും.
6x=9
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 5 ചേർക്കുക.
x=\frac{3}{2}
ഇരുവശങ്ങളെയും 6 കൊണ്ട് ഹരിക്കുക.
x=\frac{3}{2},y=1
സിസ്റ്റം ഇപ്പോൾ പരിഹരിച്ചു.