ഘടകം
2\left(u-15\right)\left(u-2\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
2\left(u-15\right)\left(u-2\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2\left(u^{2}-17u+30\right)
2 ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=-17 ab=1\times 30=30
u^{2}-17u+30 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം u^{2}+au+bu+30 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-30 -2,-15 -3,-10 -5,-6
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. 30 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-15 b=-2
സൊല്യൂഷൻ എന്നത് -17 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(u^{2}-15u\right)+\left(-2u+30\right)
u^{2}-17u+30 എന്നത് \left(u^{2}-15u\right)+\left(-2u+30\right) എന്നായി തിരുത്തിയെഴുതുക.
u\left(u-15\right)-2\left(u-15\right)
ആദ്യ ഗ്രൂപ്പിലെ u എന്നതും രണ്ടാമത്തേതിലെ -2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(u-15\right)\left(u-2\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് u-15 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
2\left(u-15\right)\left(u-2\right)
ഫാക്ടർ ചെയ്ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
2u^{2}-34u+60=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
u=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 60}}{2\times 2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
u=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 60}}{2\times 2}
-34 സ്ക്വയർ ചെയ്യുക.
u=\frac{-\left(-34\right)±\sqrt{1156-8\times 60}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
u=\frac{-\left(-34\right)±\sqrt{1156-480}}{2\times 2}
-8, 60 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
u=\frac{-\left(-34\right)±\sqrt{676}}{2\times 2}
1156, -480 എന്നതിൽ ചേർക്കുക.
u=\frac{-\left(-34\right)±26}{2\times 2}
676 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
u=\frac{34±26}{2\times 2}
-34 എന്നതിന്റെ വിപരീതം 34 ആണ്.
u=\frac{34±26}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
u=\frac{60}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, u=\frac{34±26}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 34, 26 എന്നതിൽ ചേർക്കുക.
u=15
4 കൊണ്ട് 60 എന്നതിനെ ഹരിക്കുക.
u=\frac{8}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, u=\frac{34±26}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 34 എന്നതിൽ നിന്ന് 26 വ്യവകലനം ചെയ്യുക.
u=2
4 കൊണ്ട് 8 എന്നതിനെ ഹരിക്കുക.
2u^{2}-34u+60=2\left(u-15\right)\left(u-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. x_{1}-നായി 15 എന്നതും, x_{2}-നായി 2 എന്നതും പകരം വയ്ക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}