പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2\left(k^{2}-7k-30\right)
2 ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=-7 ab=1\left(-30\right)=-30
k^{2}-7k-30 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം k^{2}+ak+bk-30 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-30 2,-15 3,-10 5,-6
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -30 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-10 b=3
സൊല്യൂഷൻ എന്നത് -7 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(k^{2}-10k\right)+\left(3k-30\right)
k^{2}-7k-30 എന്നത് \left(k^{2}-10k\right)+\left(3k-30\right) എന്നായി തിരുത്തിയെഴുതുക.
k\left(k-10\right)+3\left(k-10\right)
ആദ്യ ഗ്രൂപ്പിലെ k എന്നതും രണ്ടാമത്തേതിലെ 3 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(k-10\right)\left(k+3\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് k-10 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
2\left(k-10\right)\left(k+3\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
2k^{2}-14k-60=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
k=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\left(-60\right)}}{2\times 2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
k=\frac{-\left(-14\right)±\sqrt{196-4\times 2\left(-60\right)}}{2\times 2}
-14 സ്ക്വയർ ചെയ്യുക.
k=\frac{-\left(-14\right)±\sqrt{196-8\left(-60\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
k=\frac{-\left(-14\right)±\sqrt{196+480}}{2\times 2}
-8, -60 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
k=\frac{-\left(-14\right)±\sqrt{676}}{2\times 2}
196, 480 എന്നതിൽ ചേർക്കുക.
k=\frac{-\left(-14\right)±26}{2\times 2}
676 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
k=\frac{14±26}{2\times 2}
-14 എന്നതിന്‍റെ വിപരീതം 14 ആണ്.
k=\frac{14±26}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
k=\frac{40}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, k=\frac{14±26}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 14, 26 എന്നതിൽ ചേർക്കുക.
k=10
4 കൊണ്ട് 40 എന്നതിനെ ഹരിക്കുക.
k=-\frac{12}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, k=\frac{14±26}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 14 എന്നതിൽ നിന്ന് 26 വ്യവകലനം ചെയ്യുക.
k=-3
4 കൊണ്ട് -12 എന്നതിനെ ഹരിക്കുക.
2k^{2}-14k-60=2\left(k-10\right)\left(k-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 10 എന്നതും, x_{2}-നായി -3 എന്നതും പകരം വയ്‌ക്കുക.
2k^{2}-14k-60=2\left(k-10\right)\left(k+3\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.