a എന്നതിനായി സോൾവ് ചെയ്യുക
a=-1
a = \frac{5}{2} = 2\frac{1}{2} = 2.5
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2a^{2}=3+3a+2
1+a കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2a^{2}=5+3a
5 ലഭ്യമാക്കാൻ 3, 2 എന്നിവ ചേർക്കുക.
2a^{2}-5=3a
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
2a^{2}-5-3a=0
ഇരുവശങ്ങളിൽ നിന്നും 3a കുറയ്ക്കുക.
2a^{2}-3a-5=0
ബഹുപദം സാധാരണ രൂപത്തിൽ നൽകാൻ അത് പുനഃക്രമീകരിക്കുക. ഉയർന്നതിൽ നിന്നും താഴേക്കുള്ള പവർ ക്രമത്തിൽ നിബന്ധനകൾ അടുക്കുക.
a+b=-3 ab=2\left(-5\right)=-10
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 2a^{2}+aa+ba-5 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-10 2,-5
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -10 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-10=-9 2-5=-3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-5 b=2
സൊല്യൂഷൻ എന്നത് -3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(2a^{2}-5a\right)+\left(2a-5\right)
2a^{2}-3a-5 എന്നത് \left(2a^{2}-5a\right)+\left(2a-5\right) എന്നായി തിരുത്തിയെഴുതുക.
a\left(2a-5\right)+2a-5
2a^{2}-5a എന്നതിൽ a ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2a-5\right)\left(a+1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2a-5 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
a=\frac{5}{2} a=-1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 2a-5=0, a+1=0 എന്നിവ സോൾവ് ചെയ്യുക.
2a^{2}=3+3a+2
1+a കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2a^{2}=5+3a
5 ലഭ്യമാക്കാൻ 3, 2 എന്നിവ ചേർക്കുക.
2a^{2}-5=3a
ഇരുവശങ്ങളിൽ നിന്നും 5 കുറയ്ക്കുക.
2a^{2}-5-3a=0
ഇരുവശങ്ങളിൽ നിന്നും 3a കുറയ്ക്കുക.
2a^{2}-3a-5=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി -5 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
a=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
-3 സ്ക്വയർ ചെയ്യുക.
a=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
-8, -5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
9, 40 എന്നതിൽ ചേർക്കുക.
a=\frac{-\left(-3\right)±7}{2\times 2}
49 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
a=\frac{3±7}{2\times 2}
-3 എന്നതിന്റെ വിപരീതം 3 ആണ്.
a=\frac{3±7}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
a=\frac{10}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, a=\frac{3±7}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 7 എന്നതിൽ ചേർക്കുക.
a=\frac{5}{2}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{10}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
a=-\frac{4}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, a=\frac{3±7}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 7 വ്യവകലനം ചെയ്യുക.
a=-1
4 കൊണ്ട് -4 എന്നതിനെ ഹരിക്കുക.
a=\frac{5}{2} a=-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
2a^{2}=3+3a+2
1+a കൊണ്ട് 3 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
2a^{2}=5+3a
5 ലഭ്യമാക്കാൻ 3, 2 എന്നിവ ചേർക്കുക.
2a^{2}-3a=5
ഇരുവശങ്ങളിൽ നിന്നും 3a കുറയ്ക്കുക.
\frac{2a^{2}-3a}{2}=\frac{5}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
a^{2}-\frac{3}{2}a=\frac{5}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
a^{2}-\frac{3}{2}a+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{3}{2}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{3}{4} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
a^{2}-\frac{3}{2}a+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{4} സ്ക്വയർ ചെയ്യുക.
a^{2}-\frac{3}{2}a+\frac{9}{16}=\frac{49}{16}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{5}{2} എന്നത് \frac{9}{16} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(a-\frac{3}{4}\right)^{2}=\frac{49}{16}
a^{2}-\frac{3}{2}a+\frac{9}{16} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(a-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
a-\frac{3}{4}=\frac{7}{4} a-\frac{3}{4}=-\frac{7}{4}
ലഘൂകരിക്കുക.
a=\frac{5}{2} a=-1
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{3}{4} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}