ഘടകം
\left(1-a\right)\left(a+2\right)
മൂല്യനിർണ്ണയം ചെയ്യുക
\left(1-a\right)\left(a+2\right)
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
-a^{2}-a+2
ഒരു പോലുള്ള പദങ്ങൾ ഗുണിച്ച് യോജിപ്പിക്കുക.
p+q=-1 pq=-2=-2
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം -a^{2}+pa+qa+2 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. p, q എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
p=1 q=-2
pq നെഗറ്റീവ് ആയതിനാൽ p, q എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. p+q നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(-a^{2}+a\right)+\left(-2a+2\right)
-a^{2}-a+2 എന്നത് \left(-a^{2}+a\right)+\left(-2a+2\right) എന്നായി തിരുത്തിയെഴുതുക.
a\left(-a+1\right)+2\left(-a+1\right)
ആദ്യ ഗ്രൂപ്പിലെ a എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(-a+1\right)\left(a+2\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് -a+1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
2-a-a^{2}
a^{2} നേടാൻ a, a എന്നിവ ഗുണിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}