പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=9 ab=2\left(-5\right)=-10
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 2x^{2}+ax+bx-5 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,10 -2,5
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -10 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+10=9 -2+5=3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-1 b=10
സൊല്യൂഷൻ എന്നത് 9 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(2x^{2}-x\right)+\left(10x-5\right)
2x^{2}+9x-5 എന്നത് \left(2x^{2}-x\right)+\left(10x-5\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(2x-1\right)+5\left(2x-1\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2x-1\right)\left(x+5\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2x-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
2x^{2}+9x-5=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-9±\sqrt{9^{2}-4\times 2\left(-5\right)}}{2\times 2}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-9±\sqrt{81-4\times 2\left(-5\right)}}{2\times 2}
9 സ്ക്വയർ ചെയ്യുക.
x=\frac{-9±\sqrt{81-8\left(-5\right)}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-9±\sqrt{81+40}}{2\times 2}
-8, -5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-9±\sqrt{121}}{2\times 2}
81, 40 എന്നതിൽ ചേർക്കുക.
x=\frac{-9±11}{2\times 2}
121 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-9±11}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{2}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-9±11}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -9, 11 എന്നതിൽ ചേർക്കുക.
x=\frac{1}{2}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{2}{4} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{20}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-9±11}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -9 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=-5
4 കൊണ്ട് -20 എന്നതിനെ ഹരിക്കുക.
2x^{2}+9x-5=2\left(x-\frac{1}{2}\right)\left(x-\left(-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{1}{2} എന്നതും, x_{2}-നായി -5 എന്നതും പകരം വയ്‌ക്കുക.
2x^{2}+9x-5=2\left(x-\frac{1}{2}\right)\left(x+5\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
2x^{2}+9x-5=2\times \frac{2x-1}{2}\left(x+5\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{1}{2} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
2x^{2}+9x-5=\left(2x-1\right)\left(x+5\right)
2, 2 എന്നിവയിലെ 2 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.