t എന്നതിനായി സോൾവ് ചെയ്യുക
t=1
t=3
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
2t^{2}-8t+8-2=0
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
2t^{2}-8t+6=0
6 നേടാൻ 8 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
t^{2}-4t+3=0
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
a+b=-4 ab=1\times 3=3
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം t^{2}+at+bt+3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
a=-3 b=-1
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് രണ്ടും നെഗറ്റീവാണ്. അത്തരം ജോടി മാത്രമാണ് സിസ്റ്റം സൊല്യൂഷൻ.
\left(t^{2}-3t\right)+\left(-t+3\right)
t^{2}-4t+3 എന്നത് \left(t^{2}-3t\right)+\left(-t+3\right) എന്നായി തിരുത്തിയെഴുതുക.
t\left(t-3\right)-\left(t-3\right)
ആദ്യ ഗ്രൂപ്പിലെ t എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(t-3\right)\left(t-1\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് t-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
t=3 t=1
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ t-3=0, t-1=0 എന്നിവ സോൾവ് ചെയ്യുക.
2t^{2}-8t+8=2
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
2t^{2}-8t+8-2=2-2
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
2t^{2}-8t+8-2=0
അതിൽ നിന്നുതന്നെ 2 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
2t^{2}-8t+6=0
8 എന്നതിൽ നിന്ന് 2 വ്യവകലനം ചെയ്യുക.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 6}}{2\times 2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 2 എന്നതും b എന്നതിനായി -8 എന്നതും c എന്നതിനായി 6 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
t=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 6}}{2\times 2}
-8 സ്ക്വയർ ചെയ്യുക.
t=\frac{-\left(-8\right)±\sqrt{64-8\times 6}}{2\times 2}
-4, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
t=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 2}
-8, 6 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
t=\frac{-\left(-8\right)±\sqrt{16}}{2\times 2}
64, -48 എന്നതിൽ ചേർക്കുക.
t=\frac{-\left(-8\right)±4}{2\times 2}
16 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
t=\frac{8±4}{2\times 2}
-8 എന്നതിന്റെ വിപരീതം 8 ആണ്.
t=\frac{8±4}{4}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
t=\frac{12}{4}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, t=\frac{8±4}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 8, 4 എന്നതിൽ ചേർക്കുക.
t=3
4 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
t=\frac{4}{4}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, t=\frac{8±4}{4} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 8 എന്നതിൽ നിന്ന് 4 വ്യവകലനം ചെയ്യുക.
t=1
4 കൊണ്ട് 4 എന്നതിനെ ഹരിക്കുക.
t=3 t=1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
2t^{2}-8t+8=2
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
2t^{2}-8t+8-8=2-8
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 8 കുറയ്ക്കുക.
2t^{2}-8t=2-8
അതിൽ നിന്നുതന്നെ 8 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
2t^{2}-8t=-6
2 എന്നതിൽ നിന്ന് 8 വ്യവകലനം ചെയ്യുക.
\frac{2t^{2}-8t}{2}=-\frac{6}{2}
ഇരുവശങ്ങളെയും 2 കൊണ്ട് ഹരിക്കുക.
t^{2}+\left(-\frac{8}{2}\right)t=-\frac{6}{2}
2 കൊണ്ട് ഹരിക്കുന്നത്, 2 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
t^{2}-4t=-\frac{6}{2}
2 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
t^{2}-4t=-3
2 കൊണ്ട് -6 എന്നതിനെ ഹരിക്കുക.
t^{2}-4t+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
-2 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -4-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -2 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
t^{2}-4t+4=-3+4
-2 സ്ക്വയർ ചെയ്യുക.
t^{2}-4t+4=1
-3, 4 എന്നതിൽ ചേർക്കുക.
\left(t-2\right)^{2}=1
t^{2}-4t+4 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(t-2\right)^{2}}=\sqrt{1}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
t-2=1 t-2=-1
ലഘൂകരിക്കുക.
t=3 t=1
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 2 ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}