x എന്നതിനായി സോൾവ് ചെയ്യുക
x=4
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\left(2\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളും സ്ക്വയർ ചെയ്യുക.
2^{2}\left(\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
\left(2\sqrt{x+5}\right)^{2} വികസിപ്പിക്കുക.
4\left(\sqrt{x+5}\right)^{2}=\left(x+2\right)^{2}
2-ന്റെ പവറിലേക്ക് 2 കണക്കാക്കി 4 നേടുക.
4\left(x+5\right)=\left(x+2\right)^{2}
2-ന്റെ പവറിലേക്ക് \sqrt{x+5} കണക്കാക്കി x+5 നേടുക.
4x+20=\left(x+2\right)^{2}
x+5 കൊണ്ട് 4 ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
4x+20=x^{2}+4x+4
\left(x+2\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല് സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x+20-x^{2}=4x+4
ഇരുവശങ്ങളിൽ നിന്നും x^{2} കുറയ്ക്കുക.
4x+20-x^{2}-4x=4
ഇരുവശങ്ങളിൽ നിന്നും 4x കുറയ്ക്കുക.
20-x^{2}=4
0 നേടാൻ 4x, -4x എന്നിവ യോജിപ്പിക്കുക.
-x^{2}=4-20
ഇരുവശങ്ങളിൽ നിന്നും 20 കുറയ്ക്കുക.
-x^{2}=-16
-16 നേടാൻ 4 എന്നതിൽ നിന്ന് 20 കുറയ്ക്കുക.
x^{2}=\frac{-16}{-1}
ഇരുവശങ്ങളെയും -1 കൊണ്ട് ഹരിക്കുക.
x^{2}=16
ന്യൂമറേറ്റർ, ഭിന്നസംഖ്യാഛേദകം എന്നിവയിൽ നിന്നും നെഗറ്റീവ് ചിഹ്നം നീക്കംചെയ്യുന്നതിലൂടെ, \frac{-16}{-1} എന്ന അംശം 16 എന്നതിലേക്ക് ലളിതമാക്കാവുന്നതാണ്.
x=4 x=-4
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
2\sqrt{4+5}=4+2
2\sqrt{x+5}=x+2 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി 4 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
6=6
ലഘൂകരിക്കുക. മൂല്യം x=4 സമവാക്യം സാധൂകരിക്കുന്നു.
2\sqrt{-4+5}=-4+2
2\sqrt{x+5}=x+2 എന്ന സമവാക്യത്തിൽ x എന്നതിനായി -4 സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
2=-2
ലഘൂകരിക്കുക. മൂല്യംx=-4 സമവാക്യം സാധൂകരിക്കുന്നില്ല, കാരണം ഇടത്, വലതുഭാഗങ്ങളിൽ വിരുദ്ധ ചിഹ്നങ്ങളാണുള്ളത്.
x=4
സമവാക്യം2\sqrt{x+5}=x+2-ന് തനത് പരിഹാരം ഉണ്ട്.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}