x എന്നതിനായി സോൾവ് ചെയ്യുക
x=\sqrt{5}+1\approx 3.236067977
x=1-\sqrt{5}\approx -1.236067977
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
-\frac{1}{2}x^{2}+x+4=2
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
-\frac{1}{2}x^{2}+x+4-2=0
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
-\frac{1}{2}x^{2}+x+2=0
2 നേടാൻ 4 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{2}\right)\times 2}}{2\left(-\frac{1}{2}\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -\frac{1}{2} എന്നതും b എന്നതിനായി 1 എന്നതും c എന്നതിനായി 2 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{2}\right)\times 2}}{2\left(-\frac{1}{2}\right)}
1 സ്ക്വയർ ചെയ്യുക.
x=\frac{-1±\sqrt{1+2\times 2}}{2\left(-\frac{1}{2}\right)}
-4, -\frac{1}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1±\sqrt{1+4}}{2\left(-\frac{1}{2}\right)}
2, 2 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1±\sqrt{5}}{2\left(-\frac{1}{2}\right)}
1, 4 എന്നതിൽ ചേർക്കുക.
x=\frac{-1±\sqrt{5}}{-1}
2, -\frac{1}{2} എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{\sqrt{5}-1}{-1}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-1±\sqrt{5}}{-1} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1, \sqrt{5} എന്നതിൽ ചേർക്കുക.
x=1-\sqrt{5}
-1 കൊണ്ട് -1+\sqrt{5} എന്നതിനെ ഹരിക്കുക.
x=\frac{-\sqrt{5}-1}{-1}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-1±\sqrt{5}}{-1} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1 എന്നതിൽ നിന്ന് \sqrt{5} വ്യവകലനം ചെയ്യുക.
x=\sqrt{5}+1
-1 കൊണ്ട് -1-\sqrt{5} എന്നതിനെ ഹരിക്കുക.
x=1-\sqrt{5} x=\sqrt{5}+1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
-\frac{1}{2}x^{2}+x+4=2
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
-\frac{1}{2}x^{2}+x=2-4
ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
-\frac{1}{2}x^{2}+x=-2
-2 നേടാൻ 2 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
\frac{-\frac{1}{2}x^{2}+x}{-\frac{1}{2}}=-\frac{2}{-\frac{1}{2}}
ഇരുവശങ്ങളെയും -2 കൊണ്ട് ഗുണിക്കുക.
x^{2}+\frac{1}{-\frac{1}{2}}x=-\frac{2}{-\frac{1}{2}}
-\frac{1}{2} കൊണ്ട് ഹരിക്കുന്നത്, -\frac{1}{2} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-2x=-\frac{2}{-\frac{1}{2}}
-\frac{1}{2} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് 1 ഗുണിക്കുന്നതിലൂടെ -\frac{1}{2} കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
x^{2}-2x=4
-\frac{1}{2} എന്നതിന്റെ പരസ്പരപൂരകം ഉപയോഗിച്ച് -2 ഗുണിക്കുന്നതിലൂടെ -\frac{1}{2} കൊണ്ട് -2 എന്നതിനെ ഹരിക്കുക.
x^{2}-2x+1=4+1
-1 നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -1 എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-2x+1=5
4, 1 എന്നതിൽ ചേർക്കുക.
\left(x-1\right)^{2}=5
x^{2}-2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-1\right)^{2}}=\sqrt{5}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-1=\sqrt{5} x-1=-\sqrt{5}
ലഘൂകരിക്കുക.
x=\sqrt{5}+1 x=1-\sqrt{5}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 1 ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}