പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

2=4x^{2}+12x+9
\left(2x+3\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x^{2}+12x+9=2
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
4x^{2}+12x+9-2=0
ഇരുവശങ്ങളിൽ നിന്നും 2 കുറയ്ക്കുക.
4x^{2}+12x+7=0
7 നേടാൻ 9 എന്നതിൽ നിന്ന് 2 കുറയ്ക്കുക.
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 7}}{2\times 4}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 4 എന്നതും b എന്നതിനായി 12 എന്നതും c എന്നതിനായി 7 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-12±\sqrt{144-4\times 4\times 7}}{2\times 4}
12 സ്ക്വയർ ചെയ്യുക.
x=\frac{-12±\sqrt{144-16\times 7}}{2\times 4}
-4, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12±\sqrt{144-112}}{2\times 4}
-16, 7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-12±\sqrt{32}}{2\times 4}
144, -112 എന്നതിൽ ചേർക്കുക.
x=\frac{-12±4\sqrt{2}}{2\times 4}
32 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-12±4\sqrt{2}}{8}
2, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{4\sqrt{2}-12}{8}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-12±4\sqrt{2}}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -12, 4\sqrt{2} എന്നതിൽ ചേർക്കുക.
x=\frac{\sqrt{2}-3}{2}
8 കൊണ്ട് -12+4\sqrt{2} എന്നതിനെ ഹരിക്കുക.
x=\frac{-4\sqrt{2}-12}{8}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-12±4\sqrt{2}}{8} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -12 എന്നതിൽ നിന്ന് 4\sqrt{2} വ്യവകലനം ചെയ്യുക.
x=\frac{-\sqrt{2}-3}{2}
8 കൊണ്ട് -12-4\sqrt{2} എന്നതിനെ ഹരിക്കുക.
x=\frac{\sqrt{2}-3}{2} x=\frac{-\sqrt{2}-3}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
2=4x^{2}+12x+9
\left(2x+3\right)^{2} വികസിപ്പിക്കാൻ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} എന്ന ബൈനോമിയല്‍ സിദ്ധാന്തം ഉപയോഗിക്കുക.
4x^{2}+12x+9=2
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
4x^{2}+12x=2-9
ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക.
4x^{2}+12x=-7
-7 നേടാൻ 2 എന്നതിൽ നിന്ന് 9 കുറയ്ക്കുക.
\frac{4x^{2}+12x}{4}=-\frac{7}{4}
ഇരുവശങ്ങളെയും 4 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{12}{4}x=-\frac{7}{4}
4 കൊണ്ട് ഹരിക്കുന്നത്, 4 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+3x=-\frac{7}{4}
4 കൊണ്ട് 12 എന്നതിനെ ഹരിക്കുക.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{7}{4}+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ 3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{3}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+3x+\frac{9}{4}=\frac{-7+9}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}+3x+\frac{9}{4}=\frac{1}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{7}{4} എന്നത് \frac{9}{4} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{3}{2}\right)^{2}=\frac{1}{2}
x^{2}+3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{2}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{3}{2}=\frac{\sqrt{2}}{2} x+\frac{3}{2}=-\frac{\sqrt{2}}{2}
ലഘൂകരിക്കുക.
x=\frac{\sqrt{2}-3}{2} x=\frac{-\sqrt{2}-3}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{3}{2} കുറയ്ക്കുക.