x എന്നതിനായി സോൾവ് ചെയ്യുക
x=1828\sqrt{3567}\approx 109176.142668625
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
\frac{x}{3567^{\frac{1}{2}}}=1828
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
\frac{x}{\sqrt{3567}}=1828
പദങ്ങൾ വീണ്ടും അടുക്കുക.
\frac{x\sqrt{3567}}{\left(\sqrt{3567}\right)^{2}}=1828
\sqrt{3567} കൊണ്ട് അംശവും ഛേദവും ഗുണിക്കുന്നതിലൂടെ \frac{x}{\sqrt{3567}} എന്നതിന്റെ ഛേദം റേഷണലൈസ് ചെയ്യുക.
\frac{x\sqrt{3567}}{3567}=1828
\sqrt{3567} എന്നതിന്റെ വർഗ്ഗം 3567 ആണ്.
x\sqrt{3567}=1828\times 3567
ഇരുവശങ്ങളെയും 3567 കൊണ്ട് ഗുണിക്കുക.
x\sqrt{3567}=6520476
6520476 നേടാൻ 1828, 3567 എന്നിവ ഗുണിക്കുക.
\sqrt{3567}x=6520476
സമവാക്യം സാധാരണ രൂപത്തിലാണ്.
\frac{\sqrt{3567}x}{\sqrt{3567}}=\frac{6520476}{\sqrt{3567}}
ഇരുവശങ്ങളെയും \sqrt{3567} കൊണ്ട് ഹരിക്കുക.
x=\frac{6520476}{\sqrt{3567}}
\sqrt{3567} കൊണ്ട് ഹരിക്കുന്നത്, \sqrt{3567} കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x=1828\sqrt{3567}
\sqrt{3567} കൊണ്ട് 6520476 എന്നതിനെ ഹരിക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}