പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
y എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

18y^{2}-13y-5=0
അസമത്വം സോൾവ് ചെയ്യാൻ, ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
y=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 18\left(-5\right)}}{2\times 18}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 18 എന്നതും b എന്നതിനായി -13 എന്നതും c എന്നതിനായി -5 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
y=\frac{13±23}{36}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
y=1 y=-\frac{5}{18}
± എന്നതും പ്ലസും ± എന്നത് മൈനസും ആയിരിക്കുമ്പോൾ y=\frac{13±23}{36} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
18\left(y-1\right)\left(y+\frac{5}{18}\right)\geq 0
ലഭ്യമാക്കിയ പരിഹാരങ്ങൾ ഉപയോഗിച്ച് വ്യത്യാസം തിരുത്തിയെഴുതുക.
y-1\leq 0 y+\frac{5}{18}\leq 0
ഫലം ≥0 ആകാൻ y-1, y+\frac{5}{18} എന്നിവ രണ്ടും ഒന്നുകിൽ ≤0 അല്ലെങ്കിൽ ≥0 ആയിരിക്കണം. y-1, y+\frac{5}{18} എന്നിവ രണ്ടും ≤0 ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
y\leq -\frac{5}{18}
ഇരു അസമത്വങ്ങളെയും തൃപ്‌തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ y\leq -\frac{5}{18} ആണ്.
y+\frac{5}{18}\geq 0 y-1\geq 0
y-1, y+\frac{5}{18} എന്നിവ രണ്ടും ≥0 ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
y\geq 1
ഇരു അസമത്വങ്ങളെയും തൃപ്‌തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ y\geq 1 ആണ്.
y\leq -\frac{5}{18}\text{; }y\geq 1
ലഭ്യമാക്കിയ സൊല്യൂഷനുകളുടെ ഏകീകരണമാണ് അന്തിമ സൊല്യൂഷൻ.