പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

7\left(25c^{2}+10c+1\right)
7 ഘടക ലഘൂകരണം ചെയ്യുക.
\left(5c+1\right)^{2}
25c^{2}+10c+1 പരിഗണിക്കുക. a=5c, b=1 എന്നീ സാഹചര്യങ്ങളിൽ പെർഫക്‌റ്റ് സ്‌ക്വയർ സൂത്രവാക്യമായ a^{2}+2ab+b^{2}=\left(a+b\right)^{2} ഉപയോഗിക്കുക.
7\left(5c+1\right)^{2}
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
factor(175c^{2}+70c+7)
ഈ ട്രിനോമിനലിന് ഒരു ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ രൂപമാണുള്ളത്, ഒരുപക്ഷേ, ഒരു പൊതു ഘടകം കൊണ്ട് ഗുണിക്കാനായേക്കും. മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങൾ കണ്ടെത്തി ട്രിനോമിനൽ സ്ക്വയറുകൾ ഘടകമാക്കാൻ കഴിഞ്ഞേക്കും.
gcf(175,70,7)=7
കോഎഫിഷ്യന്‍റുകളുടെ ഉത്തമ സാധാരണ ഘടകം കണ്ടെത്തുക.
7\left(25c^{2}+10c+1\right)
7 ഘടക ലഘൂകരണം ചെയ്യുക.
\sqrt{25c^{2}}=5c
25c^{2} എന്ന ലീഡിംഗ് പദത്തിന്‍റെ വർഗ്ഗമൂലം കണ്ടെത്തുക.
7\left(5c+1\right)^{2}
ട്രിനോമിനൽ സ്ക്വയർ എന്നത് ട്രിനോമിനൽ സ്ക്വയറിന്‍റെ മധ്യ പദ ചിഹ്നം നിർണ്ണയിക്കുന്ന ചിഹ്നം ഉപയോഗിച്ചുള്ള മുന്നിലെയും പിന്നിലെയും പദങ്ങളുടെ വർഗ്ഗമൂലങ്ങളുടെ ആകെത്തുകയോ വ്യത്യാസമോ ആയ ബിനോമിനലിന്‍റെ സ്‌ക്വയർ ആണ്.
175c^{2}+70c+7=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
c=\frac{-70±\sqrt{70^{2}-4\times 175\times 7}}{2\times 175}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
c=\frac{-70±\sqrt{4900-4\times 175\times 7}}{2\times 175}
70 സ്ക്വയർ ചെയ്യുക.
c=\frac{-70±\sqrt{4900-700\times 7}}{2\times 175}
-4, 175 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
c=\frac{-70±\sqrt{4900-4900}}{2\times 175}
-700, 7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
c=\frac{-70±\sqrt{0}}{2\times 175}
4900, -4900 എന്നതിൽ ചേർക്കുക.
c=\frac{-70±0}{2\times 175}
0 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
c=\frac{-70±0}{350}
2, 175 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
175c^{2}+70c+7=175\left(c-\left(-\frac{1}{5}\right)\right)\left(c-\left(-\frac{1}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -\frac{1}{5} എന്നതും, x_{2}-നായി -\frac{1}{5} എന്നതും പകരം വയ്‌ക്കുക.
175c^{2}+70c+7=175\left(c+\frac{1}{5}\right)\left(c+\frac{1}{5}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
175c^{2}+70c+7=175\times \frac{5c+1}{5}\left(c+\frac{1}{5}\right)
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{5} എന്നത് c എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
175c^{2}+70c+7=175\times \frac{5c+1}{5}\times \frac{5c+1}{5}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{1}{5} എന്നത് c എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
175c^{2}+70c+7=175\times \frac{\left(5c+1\right)\left(5c+1\right)}{5\times 5}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{5c+1}{5}, \frac{5c+1}{5} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
175c^{2}+70c+7=175\times \frac{\left(5c+1\right)\left(5c+1\right)}{25}
5, 5 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
175c^{2}+70c+7=7\left(5c+1\right)\left(5c+1\right)
175, 25 എന്നിവയിലെ 25 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.