പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

174\times 10^{-5}x=-x^{2}
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
174\times \frac{1}{100000}x=-x^{2}
-5-ന്റെ പവറിലേക്ക് 10 കണക്കാക്കി \frac{1}{100000} നേടുക.
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} നേടാൻ 174, \frac{1}{100000} എന്നിവ ഗുണിക്കുക.
\frac{87}{50000}x+x^{2}=0
x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
x\left(\frac{87}{50000}+x\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=-\frac{87}{50000}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, \frac{87}{50000}+x=0 എന്നിവ സോൾവ് ചെയ്യുക.
x=-\frac{87}{50000}
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
174\times 10^{-5}x=-x^{2}
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
174\times \frac{1}{100000}x=-x^{2}
-5-ന്റെ പവറിലേക്ക് 10 കണക്കാക്കി \frac{1}{100000} നേടുക.
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} നേടാൻ 174, \frac{1}{100000} എന്നിവ ഗുണിക്കുക.
\frac{87}{50000}x+x^{2}=0
x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+\frac{87}{50000}x=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\frac{87}{50000}±\sqrt{\left(\frac{87}{50000}\right)^{2}}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി \frac{87}{50000} എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2}
\left(\frac{87}{50000}\right)^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{0}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{87}{50000} എന്നത് \frac{87}{50000} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=0
2 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{\frac{87}{25000}}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് -\frac{87}{50000} എന്നതിൽ നിന്ന് \frac{87}{50000} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
x=-\frac{87}{50000}
2 കൊണ്ട് -\frac{87}{25000} എന്നതിനെ ഹരിക്കുക.
x=0 x=-\frac{87}{50000}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
x=-\frac{87}{50000}
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.
174\times 10^{-5}x=-x^{2}
പൂജ്യം ഉപയോഗിച്ചുള്ള ഹരണം നിർവ്വചിക്കാത്തതിനാൽ, x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല. സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളെയും x കൊണ്ട് ഗുണിക്കുക.
174\times \frac{1}{100000}x=-x^{2}
-5-ന്റെ പവറിലേക്ക് 10 കണക്കാക്കി \frac{1}{100000} നേടുക.
\frac{87}{50000}x=-x^{2}
\frac{87}{50000} നേടാൻ 174, \frac{1}{100000} എന്നിവ ഗുണിക്കുക.
\frac{87}{50000}x+x^{2}=0
x^{2} ഇരു വശങ്ങളിലും ചേർക്കുക.
x^{2}+\frac{87}{50000}x=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}+\frac{87}{50000}x+\left(\frac{87}{100000}\right)^{2}=\left(\frac{87}{100000}\right)^{2}
\frac{87}{100000} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{87}{50000}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{87}{100000} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000}=\frac{7569}{10000000000}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{87}{100000} സ്ക്വയർ ചെയ്യുക.
\left(x+\frac{87}{100000}\right)^{2}=\frac{7569}{10000000000}
x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{87}{100000}\right)^{2}}=\sqrt{\frac{7569}{10000000000}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{87}{100000}=\frac{87}{100000} x+\frac{87}{100000}=-\frac{87}{100000}
ലഘൂകരിക്കുക.
x=0 x=-\frac{87}{50000}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{87}{100000} കുറയ്ക്കുക.
x=-\frac{87}{50000}
x എന്ന വേരിയബിൾ 0 എന്നതിന് തുല്യമാക്കാനാകില്ല.