പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-26 ab=16\times 3=48
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 16x^{2}+ax+bx+3 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും നെഗറ്റീവാണ്. 48 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-24 b=-2
സൊല്യൂഷൻ എന്നത് -26 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(16x^{2}-24x\right)+\left(-2x+3\right)
16x^{2}-26x+3 എന്നത് \left(16x^{2}-24x\right)+\left(-2x+3\right) എന്നായി തിരുത്തിയെഴുതുക.
8x\left(2x-3\right)-\left(2x-3\right)
ആദ്യ ഗ്രൂപ്പിലെ 8x എന്നതും രണ്ടാമത്തേതിലെ -1 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(2x-3\right)\left(8x-1\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 2x-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
16x^{2}-26x+3=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 16\times 3}}{2\times 16}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 16\times 3}}{2\times 16}
-26 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-26\right)±\sqrt{676-64\times 3}}{2\times 16}
-4, 16 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-26\right)±\sqrt{676-192}}{2\times 16}
-64, 3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-26\right)±\sqrt{484}}{2\times 16}
676, -192 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-26\right)±22}{2\times 16}
484 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{26±22}{2\times 16}
-26 എന്നതിന്‍റെ വിപരീതം 26 ആണ്.
x=\frac{26±22}{32}
2, 16 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{48}{32}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{26±22}{32} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 26, 22 എന്നതിൽ ചേർക്കുക.
x=\frac{3}{2}
16 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{48}{32} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=\frac{4}{32}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{26±22}{32} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 26 എന്നതിൽ നിന്ന് 22 വ്യവകലനം ചെയ്യുക.
x=\frac{1}{8}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{4}{32} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
16x^{2}-26x+3=16\left(x-\frac{3}{2}\right)\left(x-\frac{1}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി \frac{3}{2} എന്നതും, x_{2}-നായി \frac{1}{8} എന്നതും പകരം വയ്‌ക്കുക.
16x^{2}-26x+3=16\times \frac{2x-3}{2}\left(x-\frac{1}{8}\right)
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{3}{2} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
16x^{2}-26x+3=16\times \frac{2x-3}{2}\times \frac{8x-1}{8}
ഒരു പൊതു ഭിന്നസംഖ്യാഛേദി കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ കുറച്ച് x എന്നതിൽ നിന്ന് \frac{1}{8} കുറയ്ക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
16x^{2}-26x+3=16\times \frac{\left(2x-3\right)\left(8x-1\right)}{2\times 8}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{2x-3}{2}, \frac{8x-1}{8} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
16x^{2}-26x+3=16\times \frac{\left(2x-3\right)\left(8x-1\right)}{16}
2, 8 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
16x^{2}-26x+3=\left(2x-3\right)\left(8x-1\right)
16, 16 എന്നിവയിലെ 16 എന്ന ഉത്തമ സാധാരണ ഘടകം ഒഴിവാക്കുക.