പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=74 ab=16\times 9=144
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം 16x^{2}+ax+bx+9 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,144 2,72 3,48 4,36 6,24 8,18 9,16 12,12
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 144 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+144=145 2+72=74 3+48=51 4+36=40 6+24=30 8+18=26 9+16=25 12+12=24
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=2 b=72
സൊല്യൂഷൻ എന്നത് 74 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(16x^{2}+2x\right)+\left(72x+9\right)
16x^{2}+74x+9 എന്നത് \left(16x^{2}+2x\right)+\left(72x+9\right) എന്നായി തിരുത്തിയെഴുതുക.
2x\left(8x+1\right)+9\left(8x+1\right)
ആദ്യ ഗ്രൂപ്പിലെ 2x എന്നതും രണ്ടാമത്തേതിലെ 9 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(8x+1\right)\left(2x+9\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 8x+1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=-\frac{1}{8} x=-\frac{9}{2}
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ 8x+1=0, 2x+9=0 എന്നിവ സോൾവ് ചെയ്യുക.
16x^{2}+74x+9=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-74±\sqrt{74^{2}-4\times 16\times 9}}{2\times 16}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 16 എന്നതും b എന്നതിനായി 74 എന്നതും c എന്നതിനായി 9 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-74±\sqrt{5476-4\times 16\times 9}}{2\times 16}
74 സ്ക്വയർ ചെയ്യുക.
x=\frac{-74±\sqrt{5476-64\times 9}}{2\times 16}
-4, 16 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-74±\sqrt{5476-576}}{2\times 16}
-64, 9 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-74±\sqrt{4900}}{2\times 16}
5476, -576 എന്നതിൽ ചേർക്കുക.
x=\frac{-74±70}{2\times 16}
4900 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-74±70}{32}
2, 16 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{4}{32}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-74±70}{32} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -74, 70 എന്നതിൽ ചേർക്കുക.
x=-\frac{1}{8}
4 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-4}{32} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{144}{32}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-74±70}{32} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -74 എന്നതിൽ നിന്ന് 70 വ്യവകലനം ചെയ്യുക.
x=-\frac{9}{2}
16 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-144}{32} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{1}{8} x=-\frac{9}{2}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
16x^{2}+74x+9=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
16x^{2}+74x+9-9=-9
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും 9 കുറയ്ക്കുക.
16x^{2}+74x=-9
അതിൽ നിന്നുതന്നെ 9 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
\frac{16x^{2}+74x}{16}=-\frac{9}{16}
ഇരുവശങ്ങളെയും 16 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{74}{16}x=-\frac{9}{16}
16 കൊണ്ട് ഹരിക്കുന്നത്, 16 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}+\frac{37}{8}x=-\frac{9}{16}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{74}{16} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x^{2}+\frac{37}{8}x+\left(\frac{37}{16}\right)^{2}=-\frac{9}{16}+\left(\frac{37}{16}\right)^{2}
\frac{37}{16} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ \frac{37}{8}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും \frac{37}{16} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}+\frac{37}{8}x+\frac{1369}{256}=-\frac{9}{16}+\frac{1369}{256}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ \frac{37}{16} സ്ക്വയർ ചെയ്യുക.
x^{2}+\frac{37}{8}x+\frac{1369}{256}=\frac{1225}{256}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{9}{16} എന്നത് \frac{1369}{256} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x+\frac{37}{16}\right)^{2}=\frac{1225}{256}
x^{2}+\frac{37}{8}x+\frac{1369}{256} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x+\frac{37}{16}\right)^{2}}=\sqrt{\frac{1225}{256}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x+\frac{37}{16}=\frac{35}{16} x+\frac{37}{16}=-\frac{35}{16}
ലഘൂകരിക്കുക.
x=-\frac{1}{8} x=-\frac{9}{2}
സമചിഹ്നത്തിന്‍റെ ഇരുവശങ്ങളിൽ നിന്നും \frac{37}{16} കുറയ്ക്കുക.