പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

15x^{2}-15x=30
x-1 കൊണ്ട് 15x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
15x^{2}-15x-30=0
ഇരുവശങ്ങളിൽ നിന്നും 30 കുറയ്ക്കുക.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 15\left(-30\right)}}{2\times 15}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 15 എന്നതും b എന്നതിനായി -15 എന്നതും c എന്നതിനായി -30 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 15\left(-30\right)}}{2\times 15}
-15 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-15\right)±\sqrt{225-60\left(-30\right)}}{2\times 15}
-4, 15 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-15\right)±\sqrt{225+1800}}{2\times 15}
-60, -30 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-15\right)±\sqrt{2025}}{2\times 15}
225, 1800 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-15\right)±45}{2\times 15}
2025 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{15±45}{2\times 15}
-15 എന്നതിന്‍റെ വിപരീതം 15 ആണ്.
x=\frac{15±45}{30}
2, 15 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{60}{30}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{15±45}{30} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 15, 45 എന്നതിൽ ചേർക്കുക.
x=2
30 കൊണ്ട് 60 എന്നതിനെ ഹരിക്കുക.
x=-\frac{30}{30}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{15±45}{30} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 15 എന്നതിൽ നിന്ന് 45 വ്യവകലനം ചെയ്യുക.
x=-1
30 കൊണ്ട് -30 എന്നതിനെ ഹരിക്കുക.
x=2 x=-1
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
15x^{2}-15x=30
x-1 കൊണ്ട് 15x ഗുണിക്കാൻ ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിക്കുക.
\frac{15x^{2}-15x}{15}=\frac{30}{15}
ഇരുവശങ്ങളെയും 15 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{15}{15}\right)x=\frac{30}{15}
15 കൊണ്ട് ഹരിക്കുന്നത്, 15 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-x=\frac{30}{15}
15 കൊണ്ട് -15 എന്നതിനെ ഹരിക്കുക.
x^{2}-x=2
15 കൊണ്ട് 30 എന്നതിനെ ഹരിക്കുക.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -1-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -\frac{1}{2} എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
അംശത്തിന്‍റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
2, \frac{1}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
x^{2}-x+\frac{1}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
ലഘൂകരിക്കുക.
x=2 x=-1
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും \frac{1}{2} ചേർക്കുക.