പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
x എന്നതിനായി സോൾവ് ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

x\left(14-7x\right)=0
x ഘടക ലഘൂകരണം ചെയ്യുക.
x=0 x=2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x=0, 14-7x=0 എന്നിവ സോൾവ് ചെയ്യുക.
-7x^{2}+14x=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-14±\sqrt{14^{2}}}{2\left(-7\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -7 എന്നതും b എന്നതിനായി 14 എന്നതും c എന്നതിനായി 0 എന്നതും സബ്‌സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-14±14}{2\left(-7\right)}
14^{2} എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-14±14}{-14}
2, -7 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{0}{-14}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-14±14}{-14} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14, 14 എന്നതിൽ ചേർക്കുക.
x=0
-14 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x=-\frac{28}{-14}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-14±14}{-14} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -14 എന്നതിൽ നിന്ന് 14 വ്യവകലനം ചെയ്യുക.
x=2
-14 കൊണ്ട് -28 എന്നതിനെ ഹരിക്കുക.
x=0 x=2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്‌തു.
-7x^{2}+14x=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്‌ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്‌ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-7x^{2}+14x}{-7}=\frac{0}{-7}
ഇരുവശങ്ങളെയും -7 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{14}{-7}x=\frac{0}{-7}
-7 കൊണ്ട് ഹരിക്കുന്നത്, -7 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്‌ഫലമാക്കുന്നു.
x^{2}-2x=\frac{0}{-7}
-7 കൊണ്ട് 14 എന്നതിനെ ഹരിക്കുക.
x^{2}-2x=0
-7 കൊണ്ട് 0 എന്നതിനെ ഹരിക്കുക.
x^{2}-2x+1=1
-1 നേടാൻ x എന്നതിന്‍റെ കോഎഫിഷ്യന്‍റ് പദമായ -2-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്‍റെ ഇരുഭാഗത്തും -1 എന്നതിന്‍റെ സ്‌ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്‍റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്‌ക്വയറാക്കി മാറ്റുന്നു.
\left(x-1\right)^{2}=1
x^{2}-2x+1 ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്‌റ്റ് സ്‌ക്വയറാണെങ്കില്‍, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-1=1 x-1=-1
ലഘൂകരിക്കുക.
x=2 x=0
സമവാക്യത്തിന്‍റെ ഇരുവശങ്ങളിലും 1 ചേർക്കുക.