മൂല്യനിർണ്ണയം ചെയ്യുക
\left(3x-4\right)\left(3x+5\right)
ഘടകം
\left(3x-4\right)\left(3x+5\right)
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
9x^{2}-8+3x-12
9x^{2} നേടാൻ 14x^{2}, -5x^{2} എന്നിവ യോജിപ്പിക്കുക.
9x^{2}-20+3x
-20 നേടാൻ -8 എന്നതിൽ നിന്ന് 12 കുറയ്ക്കുക.
9x^{2}+3x-20
ഒരു പോലുള്ള പദങ്ങൾ ഗുണിച്ച് യോജിപ്പിക്കുക.
a+b=3 ab=9\left(-20\right)=-180
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 9x^{2}+ax+bx-20 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -180 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-12 b=15
സൊല്യൂഷൻ എന്നത് 3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(9x^{2}-12x\right)+\left(15x-20\right)
9x^{2}+3x-20 എന്നത് \left(9x^{2}-12x\right)+\left(15x-20\right) എന്നായി തിരുത്തിയെഴുതുക.
3x\left(3x-4\right)+5\left(3x-4\right)
ആദ്യ ഗ്രൂപ്പിലെ 3x എന്നതും രണ്ടാമത്തേതിലെ 5 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3x-4\right)\left(3x+5\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3x-4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}