x എന്നതിനായി സോൾവ് ചെയ്യുക
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
x=2
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
14-3x^{2}=-x+4
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
14-3x^{2}+x=4
x ഇരു വശങ്ങളിലും ചേർക്കുക.
14-3x^{2}+x-4=0
ഇരുവശങ്ങളിൽ നിന്നും 4 കുറയ്ക്കുക.
10-3x^{2}+x=0
10 നേടാൻ 14 എന്നതിൽ നിന്ന് 4 കുറയ്ക്കുക.
-3x^{2}+x+10=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-1±\sqrt{1^{2}-4\left(-3\right)\times 10}}{2\left(-3\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -3 എന്നതും b എന്നതിനായി 1 എന്നതും c എന്നതിനായി 10 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-1±\sqrt{1-4\left(-3\right)\times 10}}{2\left(-3\right)}
1 സ്ക്വയർ ചെയ്യുക.
x=\frac{-1±\sqrt{1+12\times 10}}{2\left(-3\right)}
-4, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1±\sqrt{1+120}}{2\left(-3\right)}
12, 10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-1±\sqrt{121}}{2\left(-3\right)}
1, 120 എന്നതിൽ ചേർക്കുക.
x=\frac{-1±11}{2\left(-3\right)}
121 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-1±11}{-6}
2, -3 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{10}{-6}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-1±11}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1, 11 എന്നതിൽ ചേർക്കുക.
x=-\frac{5}{3}
2 എക്സ്ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{10}{-6} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്ക്കുക.
x=-\frac{12}{-6}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-1±11}{-6} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -1 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=2
-6 കൊണ്ട് -12 എന്നതിനെ ഹരിക്കുക.
x=-\frac{5}{3} x=2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
14-3x^{2}=-x+4
x^{2} നേടാൻ x, x എന്നിവ ഗുണിക്കുക.
14-3x^{2}+x=4
x ഇരു വശങ്ങളിലും ചേർക്കുക.
-3x^{2}+x=4-14
ഇരുവശങ്ങളിൽ നിന്നും 14 കുറയ്ക്കുക.
-3x^{2}+x=-10
-10 നേടാൻ 4 എന്നതിൽ നിന്ന് 14 കുറയ്ക്കുക.
\frac{-3x^{2}+x}{-3}=-\frac{10}{-3}
ഇരുവശങ്ങളെയും -3 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{1}{-3}x=-\frac{10}{-3}
-3 കൊണ്ട് ഹരിക്കുന്നത്, -3 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{1}{3}x=-\frac{10}{-3}
-3 കൊണ്ട് 1 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{1}{3}x=\frac{10}{3}
-3 കൊണ്ട് -10 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{10}{3}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{1}{3}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{1}{6} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{10}{3}+\frac{1}{36}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{6} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{121}{36}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{10}{3} എന്നത് \frac{1}{36} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{1}{6}\right)^{2}=\frac{121}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{6}=\frac{11}{6} x-\frac{1}{6}=-\frac{11}{6}
ലഘൂകരിക്കുക.
x=2 x=-\frac{5}{3}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{1}{6} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}