പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=49 ab=12\times 44=528
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 12x^{2}+ax+bx+44 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,528 2,264 3,176 4,132 6,88 8,66 11,48 12,44 16,33 22,24
ab പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് ഒരേ ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് രണ്ടും പോസിറ്റീവാണ്. 528 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1+528=529 2+264=266 3+176=179 4+132=136 6+88=94 8+66=74 11+48=59 12+44=56 16+33=49 22+24=46
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=16 b=33
സൊല്യൂഷൻ എന്നത് 49 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(12x^{2}+16x\right)+\left(33x+44\right)
12x^{2}+49x+44 എന്നത് \left(12x^{2}+16x\right)+\left(33x+44\right) എന്നായി തിരുത്തിയെഴുതുക.
4x\left(3x+4\right)+11\left(3x+4\right)
ആദ്യ ഗ്രൂപ്പിലെ 4x എന്നതും രണ്ടാമത്തേതിലെ 11 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(3x+4\right)\left(4x+11\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് 3x+4 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
12x^{2}+49x+44=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-49±\sqrt{49^{2}-4\times 12\times 44}}{2\times 12}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-49±\sqrt{2401-4\times 12\times 44}}{2\times 12}
49 സ്ക്വയർ ചെയ്യുക.
x=\frac{-49±\sqrt{2401-48\times 44}}{2\times 12}
-4, 12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-49±\sqrt{2401-2112}}{2\times 12}
-48, 44 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-49±\sqrt{289}}{2\times 12}
2401, -2112 എന്നതിൽ ചേർക്കുക.
x=\frac{-49±17}{2\times 12}
289 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-49±17}{24}
2, 12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=-\frac{32}{24}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-49±17}{24} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -49, 17 എന്നതിൽ ചേർക്കുക.
x=-\frac{4}{3}
8 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-32}{24} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
x=-\frac{66}{24}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{-49±17}{24} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -49 എന്നതിൽ നിന്ന് 17 വ്യവകലനം ചെയ്യുക.
x=-\frac{11}{4}
6 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-66}{24} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
12x^{2}+49x+44=12\left(x-\left(-\frac{4}{3}\right)\right)\left(x-\left(-\frac{11}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി -\frac{4}{3} എന്നതും, x_{2}-നായി -\frac{11}{4} എന്നതും പകരം വയ്‌ക്കുക.
12x^{2}+49x+44=12\left(x+\frac{4}{3}\right)\left(x+\frac{11}{4}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
12x^{2}+49x+44=12\times \frac{3x+4}{3}\left(x+\frac{11}{4}\right)
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{4}{3} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
12x^{2}+49x+44=12\times \frac{3x+4}{3}\times \frac{4x+11}{4}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{11}{4} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
12x^{2}+49x+44=12\times \frac{\left(3x+4\right)\left(4x+11\right)}{3\times 4}
ന്യൂമറേറ്റർ കൊണ്ട് ന്യൂമറേറ്ററിനെയും ഭിന്നസംഖ്യാഛേദി കൊണ്ട് ഭിന്നസംഖ്യാഛേദിയേയും ഗുണിച്ചുകൊണ്ട് \frac{3x+4}{3}, \frac{4x+11}{4} എന്നിവ തമ്മിൽ ഗുണിക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
12x^{2}+49x+44=12\times \frac{\left(3x+4\right)\left(4x+11\right)}{12}
3, 4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
12x^{2}+49x+44=\left(3x+4\right)\left(4x+11\right)
12, 12 എന്നിവയിലെ 12 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.