പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

6\left(2h^{2}+5h-7\right)
6 ഘടക ലഘൂകരണം ചെയ്യുക.
a+b=5 ab=2\left(-7\right)=-14
2h^{2}+5h-7 പരിഗണിക്കുക. ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 2h^{2}+ah+bh-7 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
-1,14 -2,7
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b പോസിറ്റീവ് ആയതിനാൽ, പോസിറ്റീവ് സംഖ്യയ്‌ക്ക് നെഗറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -14 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
-1+14=13 -2+7=5
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-2 b=7
സൊല്യൂഷൻ എന്നത് 5 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(2h^{2}-2h\right)+\left(7h-7\right)
2h^{2}+5h-7 എന്നത് \left(2h^{2}-2h\right)+\left(7h-7\right) എന്നായി തിരുത്തിയെഴുതുക.
2h\left(h-1\right)+7\left(h-1\right)
ആദ്യ ഗ്രൂപ്പിലെ 2h എന്നതും രണ്ടാമത്തേതിലെ 7 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(h-1\right)\left(2h+7\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് h-1 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
6\left(h-1\right)\left(2h+7\right)
ഫാക്‌ടർ ചെയ്‌ത ഗണനപ്രയോഗം പൂർണ്ണമായും പുനരാലേഖനം ചെയ്യുക.
12h^{2}+30h-42=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
h=\frac{-30±\sqrt{30^{2}-4\times 12\left(-42\right)}}{2\times 12}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
h=\frac{-30±\sqrt{900-4\times 12\left(-42\right)}}{2\times 12}
30 സ്ക്വയർ ചെയ്യുക.
h=\frac{-30±\sqrt{900-48\left(-42\right)}}{2\times 12}
-4, 12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
h=\frac{-30±\sqrt{900+2016}}{2\times 12}
-48, -42 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
h=\frac{-30±\sqrt{2916}}{2\times 12}
900, 2016 എന്നതിൽ ചേർക്കുക.
h=\frac{-30±54}{2\times 12}
2916 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
h=\frac{-30±54}{24}
2, 12 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
h=\frac{24}{24}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, h=\frac{-30±54}{24} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -30, 54 എന്നതിൽ ചേർക്കുക.
h=1
24 കൊണ്ട് 24 എന്നതിനെ ഹരിക്കുക.
h=-\frac{84}{24}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, h=\frac{-30±54}{24} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -30 എന്നതിൽ നിന്ന് 54 വ്യവകലനം ചെയ്യുക.
h=-\frac{7}{2}
12 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-84}{24} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
12h^{2}+30h-42=12\left(h-1\right)\left(h-\left(-\frac{7}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 1 എന്നതും, x_{2}-നായി -\frac{7}{2} എന്നതും പകരം വയ്‌ക്കുക.
12h^{2}+30h-42=12\left(h-1\right)\left(h+\frac{7}{2}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
12h^{2}+30h-42=12\left(h-1\right)\times \frac{2h+7}{2}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{7}{2} എന്നത് h എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
12h^{2}+30h-42=6\left(h-1\right)\left(2h+7\right)
12, 2 എന്നിവയിലെ 2 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.