x എന്നതിനായി സോൾവ് ചെയ്യുക
x\in \left(-\infty,-\frac{\sqrt{141}}{2}+6\right)\cup \left(\frac{\sqrt{141}}{2}+6,\infty\right)
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
12x^{2}-144x+9>0
2-ന്റെ പവറിലേക്ക് 12 കണക്കാക്കി 144 നേടുക.
12x^{2}-144x+9=0
അസമത്വം സോൾവ് ചെയ്യാൻ, ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 12\times 9}}{2\times 12}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ഈ ദ്വിമാന സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a എന്നതിനായി 12 എന്നതും b എന്നതിനായി -144 എന്നതും c എന്നതിനായി 9 എന്നതും ദ്വിമാന സൂത്രവാക്യത്തിൽ വ്യവകലനം ചെയ്യുക.
x=\frac{144±12\sqrt{141}}{24}
കണക്കുകൂട്ടലുകൾ നടത്തുക.
x=\frac{\sqrt{141}}{2}+6 x=-\frac{\sqrt{141}}{2}+6
± എന്നതും പ്ലസും ± എന്നത് മൈനസും ആയിരിക്കുമ്പോൾ x=\frac{144±12\sqrt{141}}{24} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക.
12\left(x-\left(\frac{\sqrt{141}}{2}+6\right)\right)\left(x-\left(-\frac{\sqrt{141}}{2}+6\right)\right)>0
ലഭ്യമാക്കിയ പരിഹാരങ്ങൾ ഉപയോഗിച്ച് വ്യത്യാസം തിരുത്തിയെഴുതുക.
x-\left(\frac{\sqrt{141}}{2}+6\right)<0 x-\left(-\frac{\sqrt{141}}{2}+6\right)<0
ഫലം പോസിറ്റീവ് ആകാൻ x-\left(\frac{\sqrt{141}}{2}+6\right), x-\left(-\frac{\sqrt{141}}{2}+6\right) എന്നിവ രണ്ടും ഒന്നുകിൽ പോസിറ്റീവോ അല്ലെങ്കിൽ നെഗറ്റീവോ ആയിരിക്കണം. x-\left(\frac{\sqrt{141}}{2}+6\right), x-\left(-\frac{\sqrt{141}}{2}+6\right) എന്നിവ രണ്ടും നെഗറ്റീവ് ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
x<-\frac{\sqrt{141}}{2}+6
ഇരു അസമത്വങ്ങളെയും തൃപ്തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ x<-\frac{\sqrt{141}}{2}+6 ആണ്.
x-\left(-\frac{\sqrt{141}}{2}+6\right)>0 x-\left(\frac{\sqrt{141}}{2}+6\right)>0
x-\left(\frac{\sqrt{141}}{2}+6\right), x-\left(-\frac{\sqrt{141}}{2}+6\right) എന്നിവ രണ്ടും പോസിറ്റീവ് ആയിരിക്കുമ്പോൾ കേസ് പരിഗണിക്കുക.
x>\frac{\sqrt{141}}{2}+6
ഇരു അസമത്വങ്ങളെയും തൃപ്തിപ്പെടുത്തുന്ന സൊല്യൂഷൻ x>\frac{\sqrt{141}}{2}+6 ആണ്.
x<-\frac{\sqrt{141}}{2}+6\text{; }x>\frac{\sqrt{141}}{2}+6
ലഭ്യമാക്കിയ സൊല്യൂഷനുകളുടെ ഏകീകരണമാണ് അന്തിമ സൊല്യൂഷൻ.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}