x എന്നതിനായി സോൾവ് ചെയ്യുക (സങ്കീർണ്ണ സൊല്യൂഷൻ)
x=\frac{-\sqrt{390}i+10}{49}\approx 0.204081633-0.403028932i
x=\frac{10+\sqrt{390}i}{49}\approx 0.204081633+0.403028932i
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
1+20x-49x^{2}=11
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
1+20x-49x^{2}-11=0
ഇരുവശങ്ങളിൽ നിന്നും 11 കുറയ്ക്കുക.
-10+20x-49x^{2}=0
-10 നേടാൻ 1 എന്നതിൽ നിന്ന് 11 കുറയ്ക്കുക.
-49x^{2}+20x-10=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-20±\sqrt{20^{2}-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി -49 എന്നതും b എന്നതിനായി 20 എന്നതും c എന്നതിനായി -10 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-20±\sqrt{400-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
20 സ്ക്വയർ ചെയ്യുക.
x=\frac{-20±\sqrt{400+196\left(-10\right)}}{2\left(-49\right)}
-4, -49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-20±\sqrt{400-1960}}{2\left(-49\right)}
196, -10 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-20±\sqrt{-1560}}{2\left(-49\right)}
400, -1960 എന്നതിൽ ചേർക്കുക.
x=\frac{-20±2\sqrt{390}i}{2\left(-49\right)}
-1560 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{-20±2\sqrt{390}i}{-98}
2, -49 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-20+2\sqrt{390}i}{-98}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{-20±2\sqrt{390}i}{-98} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -20, 2i\sqrt{390} എന്നതിൽ ചേർക്കുക.
x=\frac{-\sqrt{390}i+10}{49}
-98 കൊണ്ട് -20+2i\sqrt{390} എന്നതിനെ ഹരിക്കുക.
x=\frac{-2\sqrt{390}i-20}{-98}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{-20±2\sqrt{390}i}{-98} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. -20 എന്നതിൽ നിന്ന് 2i\sqrt{390} വ്യവകലനം ചെയ്യുക.
x=\frac{10+\sqrt{390}i}{49}
-98 കൊണ്ട് -20-2i\sqrt{390} എന്നതിനെ ഹരിക്കുക.
x=\frac{-\sqrt{390}i+10}{49} x=\frac{10+\sqrt{390}i}{49}
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
1+20x-49x^{2}=11
എല്ലാ വേരിയബിൾ പദങ്ങളും ഇടതുഭാഗത്ത് വരാൻ വശങ്ങൾ സ്വാപ്പുചെയ്യുക.
20x-49x^{2}=11-1
ഇരുവശങ്ങളിൽ നിന്നും 1 കുറയ്ക്കുക.
20x-49x^{2}=10
10 നേടാൻ 11 എന്നതിൽ നിന്ന് 1 കുറയ്ക്കുക.
-49x^{2}+20x=10
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
\frac{-49x^{2}+20x}{-49}=\frac{10}{-49}
ഇരുവശങ്ങളെയും -49 കൊണ്ട് ഹരിക്കുക.
x^{2}+\frac{20}{-49}x=\frac{10}{-49}
-49 കൊണ്ട് ഹരിക്കുന്നത്, -49 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-\frac{20}{49}x=\frac{10}{-49}
-49 കൊണ്ട് 20 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{20}{49}x=-\frac{10}{49}
-49 കൊണ്ട് 10 എന്നതിനെ ഹരിക്കുക.
x^{2}-\frac{20}{49}x+\left(-\frac{10}{49}\right)^{2}=-\frac{10}{49}+\left(-\frac{10}{49}\right)^{2}
-\frac{10}{49} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -\frac{20}{49}-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{10}{49} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-\frac{20}{49}x+\frac{100}{2401}=-\frac{10}{49}+\frac{100}{2401}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{10}{49} സ്ക്വയർ ചെയ്യുക.
x^{2}-\frac{20}{49}x+\frac{100}{2401}=-\frac{390}{2401}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ -\frac{10}{49} എന്നത് \frac{100}{2401} എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
\left(x-\frac{10}{49}\right)^{2}=-\frac{390}{2401}
x^{2}-\frac{20}{49}x+\frac{100}{2401} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{10}{49}\right)^{2}}=\sqrt{-\frac{390}{2401}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{10}{49}=\frac{\sqrt{390}i}{49} x-\frac{10}{49}=-\frac{\sqrt{390}i}{49}
ലഘൂകരിക്കുക.
x=\frac{10+\sqrt{390}i}{49} x=\frac{-\sqrt{390}i+10}{49}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{10}{49} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}