പ്രധാന ഉള്ളടക്കം ഒഴിവാക്കുക
ഘടകം
Tick mark Image
മൂല്യനിർണ്ണയം ചെയ്യുക
Tick mark Image
ഗ്രാഫ്

വെബ് തിരയലിൽ നിന്നുള്ള സമാന പ്രശ്‌നങ്ങൾ

പങ്കിടുക

a+b=-20 ab=11\left(-4\right)=-44
ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. ആദ്യം, ഗണനപ്രയോഗം 11x^{2}+ax+bx-4 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-44 2,-22 4,-11
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്‌ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്‌ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -44 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-44=-43 2-22=-20 4-11=-7
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-22 b=2
സൊല്യൂഷൻ എന്നത് -20 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(11x^{2}-22x\right)+\left(2x-4\right)
11x^{2}-20x-4 എന്നത് \left(11x^{2}-22x\right)+\left(2x-4\right) എന്നായി തിരുത്തിയെഴുതുക.
11x\left(x-2\right)+2\left(x-2\right)
ആദ്യ ഗ്രൂപ്പിലെ 11x എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-2\right)\left(11x+2\right)
ഡിസ്‌ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-2 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
11x^{2}-20x-4=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) പരിവർത്തനം ഉപയോഗിച്ച് ദ്വിമാന പോളിനോമിയൽ ഫാക്‌ടർ ചെയ്യാനാകും, അവിടെ x_{1}, x_{2} എന്നിവ ax^{2}+bx+c=0 എന്ന ദ്വിമാന സമവാക്യത്തിന്‍റെ സൊല്യൂഷനുകളായിരിക്കും.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 11\left(-4\right)}}{2\times 11}
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 11\left(-4\right)}}{2\times 11}
-20 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-20\right)±\sqrt{400-44\left(-4\right)}}{2\times 11}
-4, 11 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-20\right)±\sqrt{400+176}}{2\times 11}
-44, -4 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-20\right)±\sqrt{576}}{2\times 11}
400, 176 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-20\right)±24}{2\times 11}
576 എന്നതിന്‍റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{20±24}{2\times 11}
-20 എന്നതിന്‍റെ വിപരീതം 20 ആണ്.
x=\frac{20±24}{22}
2, 11 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{44}{22}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്‌നമാകുമ്പോൾ, x=\frac{20±24}{22} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 20, 24 എന്നതിൽ ചേർക്കുക.
x=2
22 കൊണ്ട് 44 എന്നതിനെ ഹരിക്കുക.
x=-\frac{4}{22}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്‌നമാകുമ്പോൾ, x=\frac{20±24}{22} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 20 എന്നതിൽ നിന്ന് 24 വ്യവകലനം ചെയ്യുക.
x=-\frac{2}{11}
2 എക്‌സ്‌ട്രാക്റ്റുചെയ്ത് റദ്ദാക്കുന്നതിലൂടെ, \frac{-4}{22} എന്ന അംശത്തെ ഏറ്റവും കുറഞ്ഞ ടേമുകളിലേക്ക് കുറയ്‌ക്കുക.
11x^{2}-20x-4=11\left(x-2\right)\left(x-\left(-\frac{2}{11}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ഉപയോഗിച്ച് യഥാർത്ഥ ഗണനപ്രയോഗം ഫാക്‌ടർ ചെയ്യുക. x_{1}-നായി 2 എന്നതും, x_{2}-നായി -\frac{2}{11} എന്നതും പകരം വയ്‌ക്കുക.
11x^{2}-20x-4=11\left(x-2\right)\left(x+\frac{2}{11}\right)
p-\left(-q\right) മുതൽ p+q വരെയുള്ള ഫോമിലെ എല്ലാ എക്സ്‌പ്രഷനുകളും ലളിതമാക്കുക.
11x^{2}-20x-4=11\left(x-2\right)\times \frac{11x+2}{11}
ഒരു പൊതുവായ ഭിന്നസംഖ്യാഛേദം കണ്ടെത്തി ന്യൂമറേറ്ററുകൾ ചേർക്കാൻ \frac{2}{11} എന്നത് x എന്നതിൽ ചേർക്കുക. തുടർന്ന്, സാധ്യമായത്രയും കുറഞ്ഞ പദങ്ങളിലേക്ക് അംശം കുറയ്ക്കുക.
11x^{2}-20x-4=\left(x-2\right)\left(11x+2\right)
11, 11 എന്നിവയിലെ 11 എന്ന ഉത്തമ സാധാരണ ഘടകം എടുത്തുമാറ്റുക.