x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-2
x=3
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}-x-6=0
ഇരുവശങ്ങളെയും 100 കൊണ്ട് ഹരിക്കുക.
a+b=-1 ab=1\left(-6\right)=-6
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx-6 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-6 2,-3
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -6 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-6=-5 2-3=-1
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-3 b=2
സൊല്യൂഷൻ എന്നത് -1 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-3x\right)+\left(2x-6\right)
x^{2}-x-6 എന്നത് \left(x^{2}-3x\right)+\left(2x-6\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-3\right)+2\left(x-3\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 2 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-3\right)\left(x+2\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-3 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=3 x=-2
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-3=0, x+2=0 എന്നിവ സോൾവ് ചെയ്യുക.
100x^{2}-100x-600=0
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 100\left(-600\right)}}{2\times 100}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 100 എന്നതും b എന്നതിനായി -100 എന്നതും c എന്നതിനായി -600 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 100\left(-600\right)}}{2\times 100}
-100 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-100\right)±\sqrt{10000-400\left(-600\right)}}{2\times 100}
-4, 100 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-100\right)±\sqrt{10000+240000}}{2\times 100}
-400, -600 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-100\right)±\sqrt{250000}}{2\times 100}
10000, 240000 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-100\right)±500}{2\times 100}
250000 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{100±500}{2\times 100}
-100 എന്നതിന്റെ വിപരീതം 100 ആണ്.
x=\frac{100±500}{200}
2, 100 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{600}{200}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{100±500}{200} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 100, 500 എന്നതിൽ ചേർക്കുക.
x=3
200 കൊണ്ട് 600 എന്നതിനെ ഹരിക്കുക.
x=-\frac{400}{200}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{100±500}{200} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 100 എന്നതിൽ നിന്ന് 500 വ്യവകലനം ചെയ്യുക.
x=-2
200 കൊണ്ട് -400 എന്നതിനെ ഹരിക്കുക.
x=3 x=-2
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
100x^{2}-100x-600=0
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
100x^{2}-100x-600-\left(-600\right)=-\left(-600\right)
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും 600 ചേർക്കുക.
100x^{2}-100x=-\left(-600\right)
അതിൽ നിന്നുതന്നെ -600 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
100x^{2}-100x=600
0 എന്നതിൽ നിന്ന് -600 വ്യവകലനം ചെയ്യുക.
\frac{100x^{2}-100x}{100}=\frac{600}{100}
ഇരുവശങ്ങളെയും 100 കൊണ്ട് ഹരിക്കുക.
x^{2}+\left(-\frac{100}{100}\right)x=\frac{600}{100}
100 കൊണ്ട് ഹരിക്കുന്നത്, 100 കൊണ്ട് ഗുണിക്കുന്നതിനെ നിഷ്ഫലമാക്കുന്നു.
x^{2}-x=\frac{600}{100}
100 കൊണ്ട് -100 എന്നതിനെ ഹരിക്കുക.
x^{2}-x=6
100 കൊണ്ട് 600 എന്നതിനെ ഹരിക്കുക.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -1-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{1}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{1}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
6, \frac{1}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
x^{2}-x+\frac{1}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
ലഘൂകരിക്കുക.
x=3 x=-2
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{1}{2} ചേർക്കുക.
ഉദാഹരണങ്ങൾ
വർഗ്ഗസംഖ്യയുള്ള സമവാക്യം
{ x } ^ { 2 } - 4 x - 5 = 0
ത്രികോണമിതി
4 \sin \theta \cos \theta = 2 \sin \theta
ലീനിയർ സമവാക്യം
y = 3x + 4
അങ്കഗണിതം
699 * 533
മെട്രിക്സ്
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ഒരേസമയത്തെ സമവാക്യം
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
വ്യത്യാസം
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
സമാകലനം
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
പരിധികൾ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}